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Abstract

The speed at which the US economy has recovered from recessions ranges from

months to years. We propose a model incorporating innovation network, production

network, and cross-sectional shock and show that their interactions jointly explain large

variations in the recovery speed across recessions in the US.

Besides the production linkages, firms learn insights on production from each other

through the innovation network. We show that the shock’s sectoral distribution plays

a crucial role in its amplification and persistence when the innovation network takes a

low-rank structure.

We estimate a state-space model of the cross-sectional technology shock and docu-

ment a set of new stylized facts on the structure of the innovation network and sectoral

distribution of the shock for the US. We show that the specific low-rank network struc-

ture and the time-varying sectoral distribution of the shock can well explain the large

variation in the recovery speed across recessions in the US. Finally, to emphasize the

prevalence of the channel, we explore the application of the theory in asset pricing.
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1 Introduction

The speed at which the US economy has recovered from recessions varies from months to

years. Understanding the forces behind a sluggish recovery has been the focus of economists

and policymakers [Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997; Brunnermeier,

Eisenbach, and Sannikov, 2012; Fernald, Hall, Stock, and Watson, 2017; Bianchi, Kung, and

Morales, 2019; Duval, Hong, and Timmer, 2019]. This paper shows that the innovation

network and its interactions with the production network and the cross-sectional technology

shock explain the large variation in recovery speed from recessions in the US1. In this pa-

per, we interpret the technology shock as a shock to the technology progress such as new

production methods or processes, and the cross-sectional shock as a vector with each entry

being a shock to a sector2.

Firms rely on each other not just to acquire others’ inputs but also insights to improve their

productivity. The channel for this is the innovation network, which contains the linkages

between firms through knowledge flow [Jaffe, 1986; Bloom, Schankerman, and Van Reenen,

2013; Acemoglu, Akcigit, and Kerr, 2016b; Ahmadpoor and Jones, 2017]. When a firm is

exposed to a shock to technology progress, it can be propagated along the input-output chain

as well as the innovation network via what firms learn from the new technology. Whether the

shock is significantly amplified and becomes persistent depends on the innovation network

structure, the interactions between the innovation and production networks, and how the

shock propagates through the networks. This paper elucidates these channels and shows

that the interactions among the cross-sectional shock, innovation network, and production

network play an important role in influencing the recovery speed from recessions.

We propose a dynamic general equilibrium model with multiple sectors incorporating a pro-

duction network, an innovation network, and cross-sectional shocks. In the economy, sectors

are linked through the input-output chain and production technology via the innovation net-

work. We identify sufficient conditions under which the interactions among cross-sectional

shocks, the innovation network, and the production network provide a channel through which

the initial shocks persist, amplify, and diffuse throughout the economy, yielding a prolonged

recovery process when the shocks are adverse. These sufficient conditions are empirically

1According to the NBER Business Cycle Dating Committee, there are vast differences in the time that
the US economy takes to recover from the adverse shocks. Sometimes, it takes less than one year to recover,
while in some episodes, it may take several years to recover from the initial adverse shocks. The reference
dates of US business cycles can be found on this webpage.

2 Consider an economy with J sectors, the cross-sectional shock at period t just refers to a vector
εt = (ε1t, ...εJt) with εjt the sector j’s exposure to the shock.
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measurable, identifiable, and alterable by policy interventions.

Formally, in an economy with J sectors, we first show that the impact of the cross-sectional

shocks on future growth can be decomposed into J components, each component includes its

amplification and persistence 3. We show that the amplification can be fully captured by two

sufficient statistics - the inner product between the eigenvector centrality of the innovation

network and the cross-sectional shocks, and the inner product between sectoral eigenvector

centrality of the innovation network and sectoral Katz-centrality in the production network.

The first inner product captures how the cross-sectional shock (technology shock) propagates

through the innovation network. It is a weighted-average shock with the weights being the

sectors’ importance in the innovation network 4, suggesting that the direction of the cross-

sectional shock matters in the amplification. The second inner-product fully captures the

interactions between the innovation and production networks.

The persistence of the initial technology shocks’ impact on future growth depends on two

forces. Consider a cross-sectional shock. On the one hand, the impact of the shock declines

over time due to the depreciation effect if sectors do not learn from each other. On the other

hand, sectors can deploy resources to learn and gain insights from the technology shock.

This technology spillover could cancel out the depreciation effect. If the spillover effect is

sufficiently large, the shocks’ impact becomes very persistent.

We show that the spillover effect’s strength depends on the sectoral distribution of the shock

(i.e., the direction of the shock) and the eigenvalue distribution of the innovation network’s

adjacency matrix5. We first show that all sectors experience the same spillover effect when

3We say a time-dependent process {xt, t ∈ N} can be decomposed into J components with various
persistence and amplification if we can write xt as

xt =

J∑
k=1

ckg
t
k

where gk and the coefficient ck are referred to as the persistence and the amplification of the kth component,
respectively. Consider the case gk ∈ (0, 1), the kth component becomes very persistent when gk ≈ 1.

4Here, in an economy with J sectors, consider the cross-sectional shock εt at period t and the eigenvector
centrality v = (v1, v2, ..., vJ) with vk sector k’ importance in innovation network, the inner product is defined
as

(εt,v) =

J∑
k=1

εktvk.

5A network can be either represented as a graph or matrix. When we talk about the eigenvalues or
eigenvectors of a network, we refer to those associated with its adjacency matrix. For details, see Section 2.
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the shock’s direction is parallel to an eigenvector of the innovation network. Specifically,

all sectors’ spillover effect becomes most potent when the shock’s direction parallels to the

leading eigenvector (i.e., the vector of eigenvector centrality) of the innovation network. In

contrast, the spillover effect is weakest when the shock’s direction parallels the eigenvector

associated with the innovation network’s smallest eigenvalue. When the magnitude of the

most potent spillover effect roughly equals the depreciation effect, the shock’s impact be-

comes very persistent.

Consider the case where the strongest spillover effect can roughly cancel out the depreciation

effect. When the innovation network is low-rank such that the leading eigenvalue is much

larger than the remaining ones, the shocks’ impact becomes very persistent only if the shock

parallels to the eigenvector centrality’s direction. In contrast, the impact declines quickly if

the shock follows other directions. As a result, the shock direction reveals information on

the recovery path of the economy if the innovation network takes a low-rank structure.

Overall, the shock’s impact on future growth can be significantly amplified and persistent

only if two conditions are satisfied. First, the shock highly correlates with sectors’ importance

in the innovation network, and the sectors’ importance in the innovation network highly cor-

relates with sectors’ importance in the production network. Second, the innovation-network

structure is such that the most potent technology spillover effect can roughly cancel the de-

preciation effect. To lift the economy out of the slow recovery, one policy implication of the

theory is to bailout important sectors in the innovation network to mitigate their exposures

to the adverse shocks.

To evaluate the empirical importance of the channel documented here, we construct a US

patent dataset traced back to 1919 and an input-output dataset back to 1951. Based on

the patent dataset, we construct a proxy for the technology innovation and estimate the

underlying innovation network at the three-digit NAICS level. Using the sectoral input and

output data, we construct the production network to proxy for the sectoral input-output

linkages. We estimate the remaining undetermined parameters of the innovation network

using a state-space model.

We document a set of new facts. First, the innovation network of the US has a low-rank

structure so that the leading eigenvalue is much larger in magnitude than the rest. For

example, the second-largest eigenvalue is only 20 percent of the leading one. Second, the

leading eigenvalue is large enough that the corresponding strongest spillover effect roughly
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cancels out the depreciation effect. Thus, the shock’s impact becomes very persistent when

the cross-sectional shock follows the direction of the innovation network’s eigenvector cen-

trality. Third, there is a large time-variation in the inner product between the shock and the

eigenvector centrality of the innovation network. For example, during the great recession

of 2008, important sectors in the innovation network suffered much more than their less

important counterparts. This pattern reverses during the recessions of 1991 and 2001 when

sectors in the center suffer much less than those in the periphery of the innovation network.

As another application, we examine the implications of the theory on asset prices. Bansal

and Yaron [2004] model the expected consumption growth as one with a small but persistent

component and refer to it as ”long-run risk” of the consumption. They argue that the

long-run risk in consumption is the key to several puzzles in the financial markets - equity

premium, the risk-free rate, and the market return volatility. However, where the small but

persistent component comes from has been a puzzle [Bansal and Yaron, 2004]. Our theory

provides a channel to endogenize a time-varying, small but persistent consumption growth

component in a networked economy. The persistent component becomes significant when

the cross-sectional shock shift to one specific direction - sectors’ importance vector.

Literature

This paper contributes to several strands of literature in macro, network economics, and

asset pricing. It first contributes to the literature exploring the source of the persistent

component of aggregate growth. There are two main narratives, one emphasizes the role

of financial friction [Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997; Brunnermeier,

Eisenbach, and Sannikov, 2012], another accrue the persistent component to the endogenous

TFP [De Ridder and Teulings, 2017; Fernald, Hall, Stock, and Watson, 2017; Queralto, 2019;

Bianchi, Kung, and Morales, 2019; Anzoategui, Comin, Gertler, and Martinez, 2019; Duval,

Hong, and Timmer, 2019]. Our theory falls in the second category. Comin and Gertler [2006]

documents there is a significant medium-term business cycle of post-WWII and attributes

it to the endogeneous R&D as a response to high-frequency shocks. Anzoategui, Comin,

Gertler, and Martinez [2019] argues that the productivity slowdown of the post-Great Re-

cession of 2007-2009 reflects an endogenous reduction in productivity-enhancing investment

activities - the creation of new technology through R&D and the diffusion of technologies

via adoption. Bianchi, Kung, and Morales [2019] emphasizes the difference between debt

and equity financing and argues that equity (debt) financing shocks are more important for

explaining R&D (physical) investment. Thanks to the rare occurrence of sizable adverse ag-
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gregate shocks, it is hard to evaluate the importance of the channels proposed in the previous

literature. Another main challenge is that they provide us no clues on the persistence and

amplification of the initial shock from the cross-sectional information. Unlike those papers

which model the economy as a single representative firm, our theory emphasizes the role

of network structure - the interactions between the networks and cross-sectional shocks -

in amplifying shocks and explaining persistence. The rich interactions between the network

structure and the shock enable us to test the channel’s importance directly.

In the macroeconometrics and business cycle literature, researchers usually implicitly as-

sume that the aggregate growth contains long-term and short-term components with various

loading without further economic justifications, for example, King and Watson [1996]; Ho-

drick and Prescott [1997]; Baxter and King [1999]; Müller and Watson [2018]. Our theory

rationalizes these assumptions by showing that the interaction of cross-sectional shocks with

the innovation and production networks allows us to decompose the impact of shocks on ag-

gregate growth into components with various levels of persistence and loadings. The theory

provides further insights on the source of the persistence - the technology spillovers, and the

source of loadings - the inner products between sectors’ importance in innovation network

and the cross-sectional shock, and the Katz centrality in the production network.

This article also contributes to the recent literature on innovation network. Bloom, Schanker-

man, and Van Reenen [2013] proposes a new measure of technology spillover using patent

citations across companies. Acemoglu, Akcigit, and Kerr [2016b] describes the innovation

network using patent citation of the US since 1976, and document that the network is very

stable and sparse and that the upstream sectors can predict the patent issuance of down-

stream sectors very well. Ahmadpoor and Jones [2017] shows a slow diffusion process of

innovation using patents and publications. Our article follows Bloom et al. [2013] in the

construction of the innovation network but studies the implications of the innovation net-

work in business cycles in the dynamic context.

Technically, our theory builds on the production network literature Long and Plosser [1983].

Recent studies emphasizing the potential role of idiosyncratic shocks in networks include Hor-

vath et al. [1998]; Horvath [2000]; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi [2012];

Acemoglu, Akcigit, and Kerr [2016a]; Barrot and Sauvagnat [2016]; Atalay [2017]; Baqaee

[2018]; Baqaee and Farhi [2019]. They argue that idiosyncratic shocks to industries’ produc-

tivities have the potential to generate aggregate fluctuations. For example, Atalay [2017]

find that the industry-specific shocks contribute to at least half of the aggregate volatility.
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These researches examine the amplification effect in the static context and only focus on the

production network. Our paper provides insights into the persistence and amplification of

idiosyncratic shocks in the dynamic context by incorporating both production and innova-

tion networks. More importantly, we show that the cross-sectional shock direction reveals

no information on the future recovery path if there is no innovation network. However, in an

economy with a low-rank innovation network, the shock direction reveals essential informa-

tion on the economy’s recovery path. Thus, the innovation network is an essential element

to understand why the direction of the shock matters. Finally, several studies emphasize the

role of network structure in propagating shocks. Our contribution is to propose a new set of

sufficient statistics to fully summarize network structure’s role in amplifying and persisting

shocks. Similar tools on eigenvalue decomposition were employed in studying the optimal

intervention in networks in a static context Galeotti, Golub, and Goyal [2020].

Finally, this paper provides a new channel to endogenize the long-run risk in a production

economy from a networks’ perspective. Several recent papers try to rationalize the long-

run risk based on production [Garleanu, Panageas, and Yu, 2012; Gârleanu, Kogan, and

Panageas, 2012; Kogan, Papanikolaou, and Stoffman, 2013; Kung and Schmid, 2015]. Kung

and Schmid [2015] argue that R&D endogenously drives a small, persistent component in

productivity that yields long-run uncertainty on economic growth. However, no paper has

examined the asset pricing implications of technology networks, while our paper naturally

links the predictable components of growth with cross-sectional shocks and asset prices.

The rest of the paper is organized as follows. Section 2 describes the basic setup of the pro-

duction network, innovation network, preference, and results in general equilibrium. Section

3 discusses the main theoretical results, where we explore the linkage between the persistence

of shocks, innovation network, production network, and the cross-sectional shocks. Section

4 presents the main results on model estimation. In section 4.4, we document several facts

about the innovation network and its interactions with the production network and techno-

logical shock. Section 5 discusses the potential applications of our theory in other puzzles.

Section 6 concludes the paper. The technical details, the generalization of our results, and

the proofs are in the Appendix.
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2 Model

2.1 Production of Intermediate and Final Products

We consider a production economy with standard input-output linkages following Long and

Plosser [1983], which has been widely used to examine the macro implications of input-output

linkages [Acemoglu, Akcigit, and Kerr, 2016a; Herskovic, 2018; Baqaee, 2018; Baqaee and

Farhi, 2019]. In most cases, previous studies focus on a Cobb-Douglas production technology

that allows for an analytical solution, with the exception of Baqaee and Farhi [2019] which

examines the non-linearity effect of the micro shocks in a static setting using a second-order

Taylor expansion.

Besides the input-output network in the production space, we also incorporate an innova-

tion network to capture the technology linkage between sectors. Suppose there are [J ] =

{1, 2, ...J} sectors for intermediate goods in the economy 6. Each intermediate good is

used as an input for the final consumption good and other intermediate goods. Denote

At = (A1t, ..., AJt) as a joint process of the productivity driven by technology, and let

ait = log(Ait). Denote by Yit the output of sector i, Iit the composite input of sector i

to produce its products, and Xijt the input of sector i from sector j. At time t, sector i

combines its own technology and the outputs of other sectors as inputs to produce

Yit = AitI
η
it, s.t. Iit =

[ ∑
j∈[J ]

θijX
1−1/vi
ijt

] 1
1−1/vi (1)

with η ∈ (0, 1) captures decreasing return to scale. The production of the composite input Iit

exhibits constant elasticity of substitution (CES). vi is the elasticity of substitution for the

production technology 7. If vi > 1, the inputs used by firm i are substitutes to each other.

An increase in the price of Xijt would induce firm i to substitute away from input j and

reduce the share of i’s expenditure on j. When vi < 1, the inputs of firm i are complements

to each other. Firm i can not flexibly substitute away input j as a response to price of Xijt,

leading to a rise in the share of i’s expenditure on j when the price of Xijt rises. When

v = 1, the production technology is reduced to Cobb-Douglas form with Iit =
∏

j X
θij
ijt . The

6In the theory part, we use a firm or sector interchangeably. In the empirical part, we would provide
evidence at both the firm and industry level.

7Specifically, at the optimum of firm i,

vi = −∂ log(Xijk/Xikt)

∂ log(Pj/Pk)
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share of firm i’s expenditure on input j at time t is constant. For the case of vi = 1, ∀i ∈ [J ],

we can obtain a closed-form solution to the whole system since the system is log-linear with

constant sector shares [Baqaee and Farhi, 2019]. For the general case, we provide an analyt-

ical solution to the aggregate output.

Let P t = (P1t, ..., PJt) be the price vector at period t for the J intermediate products, with

Pit the price of intermediate good i. The cash flow or dividend from firm i ∈ [J ] at t is

Dit = max
Xijt,Iit

PitAitI
η
it −

∑
j

PjtXijt, s.t. Iit =
[ ∑
j∈[J ]

θijX
1−1/vi
ijt

] 1
1−1/vi . (2)

Let λit be the shadow price of the composite input Iit, i.e., the Lagrange multiplier of the

constraint in Equation (2). The first order condition implies

Iit : ηPitYit = λitIit =⇒ Iit =
[ηAitPit

λit

] 1
1−η

(3)

and

Xijt : Pjt = λitθijI
1/vi
it X

−1/vi
ijt =⇒ Xijt = Iit

[θijλit
Pjt

]vi
. (4)

To write down Iit, Xijt, j ∈ [J ] as functions of price and other parameters, we need to pin

down expression of shadow price λit. Plugging Equation 4 into Equation 2, we have

λ1−viit =
∑
j

θviijP
1−vi
jt , if vi 6= 1

λit =
∏
j

(
Pjt
θij

)θij , if vi = 1.
(5)

Given the dividend flow Dit, The value of firm i ∈ [J ] satisfies

Vit = Dit + EtMt,t+1Vit+1 (6)

where Mt,t+1 is the Stochastic Discount Factor (SDF) between periods t and t + 18. For

details on Mt,t+1, see Section 2.3.

The final consumption goods are produced by competitive firms with technology Ct =
∏

i c
αi
it ,

where cit is the amount of good in sector i used to produce the final consumption good at t.

8In the literature, the SDF is also referred to as state price density.
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The producer of final consumption goods solves for

max
Ct,cit

Ct −
∑
i

Pitcit, with Ct =
∏
i

cαiit (7)

At optimality,
∏

j P
αj
jt =

∏
j α

αj
j and Pitcit = αiCt. In this paper, we always normalize the

price of final consumption good to be 1.

2.2 Innovation Network and Arrival Rate

In this section, we model the technology process At in a reduced form so that we can quickly

dive into our main insights. In Appendix A.1, we provide a micro-founded model to justify

this reduced form. Let ∆ait = ait−ait−1, at = (a1t, ..., aJt)
′, and ∆at = (∆a1t, ...,∆aJt). We

model the process ait as an arrival process [Aghion and Howitt, 1992]:

∆ait = µit + εAit, (8)

where µit is the arrival rate of new innovations for i between t− 1 and t, and εAit is the shock

to the realization of innovation, with E[εAit] = 0.

The main theme of this subsection is to model the underlying arrival rate of the innovation

µt = (µ1t, ..., µJt). Sector i can learn insights from the new technology of other sectors,

promoting the arrival rate of its own future innovation. We model the learning process as9

µit+1 = (1− ρ)µit +
∑
j

Wij∆ajt + εuit (9)

In appendix A.1, we provide a heuristic micro foundation to this process with endogenous

match and search, and R&D decision. εut = (εu1,t, ..., ε
u
J,t) is a joint stationary process with

Etεut = 0, ∀i ∈ [J ], which will be further specified later. (1 − ρ)µit is used to capture the

depletion effect of new ideas as in Bloom, Jones, Van Reenen, and Webb [2020]. That is, in

a model without learning (Wij = 0,∀i, j), the arrival rate of the new technology declines at

the rate ρ. The term
∑

jWij∆ajt captures the technology diffusion among sectors. Here, we

assume that only the innovation of last period,
∑

jWij∆ajt, contributes to the arrival rate

of new technology. The contribution of historical knowledge to µi,t+1 are fully captured by

9This setup shares similar spirit to the empirical work by Acemoglu, Akcigit, and Kerr [2016b] where
they use patent citation to estimate the sector-to-sector innovation network, and document that the patent
issuance in upstream sectors can well predict the patent issuance in the downstream sectors in the innovation
network in ten years horizon.
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µit. In appendix, we extend our model to more general cases by allowing firms to learn from

the historical innovations according to

µit+1 = (1− ρ)µit +
∑
j

Wijϕ(L)∆ajt + εuit, (10)

where ϕ(L) =
∑

s≥0 ϕsL
s, with the lag-operator L and

∑
s≥0 ϕs = 110.

In matrix notation, we write equations 8 and 9 as

∆at = µt + εAt

µt+1 = (1− ρ)µt +W∆at + εut
(11)

Consider several special cases of the process 11. Suppose there is no realization shock,

εAt = 0, the process is reduced to ∆at+1 = (1− ρ)∆at +W∆at + εut .,with ∆at = µt.

1. Suppose there is no technology spillover, Wij = 0,∀i, j ∈ [J ]. The process is reduced

to ∆at+1 = (1−ρ)∆at + ε
u
t , which is a standard setup as in Onatski and Ruge-Murcia

[2013]; Atalay [2017].

2. If we further assume ρ = 1, then the process is reduced to ∆at+1 = εut which is

examined by Foerster, Sarte, and Watson [2011]

Assumption 2.1 To guarantee the stationarity of the process µt, we assume λmax(W ) ≤ ρ,

where λmax(X) is the largest eigenvalue of matrix X.

2.3 Consumer

The representative consumer chooses consumption, Ct, and the share-holding on j, φjt, to

maximize her life time utility with Epstein-Zin preference [Epstein and Zin, 1989]11.

Ut = max
Ct,φjt

[
(1− δ)C1−1/ψ

t + δ(Et[U
1−γ
t+1 ])

1−1/ψ
1−γ

] 1
1−1/ψ

Ct +
∑
j

φjt(Vjt −Djt) =
∑
j

φjt−1Vjt
(12)

where δ ∈ (0, 1) is the discount rate of time preference. γ is the coefficient of relative risk

averse and ψ is the elasticity of inter-temporal substitution (IES). We use E-Z preference

10That is, firms learn from historical innovation with distributed lags, for details on distributed lags model,
see Griliches [1967]

11We use the general Epstein-Zin preference but not its special case, time-separable preference, such that
we can explore the asset pricing implications of our theory.
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that is standard in asset pricing literature so that the far future consumption growth can be

reflected in the current asset price. Denote θ = 1−γ
1−1/ψ , and the sign of θ is determined by

the magnitude of φ and γ. When γ = 1
ψ

, the utility function is simplified to the usual time-

separable preference with constant relative risk averse (CRRA). Denote Wt =
∑

j φjt−1Vjt

as the wealth at the beginning of the period, Gt+1 = Ct+1/Ct as the growth of consumption,

and Rm,t+1 = Wt+1

Wt−Ct as the return of the wealth. Epstein and Zin [1989] shows that the gross

return of any asset i satisfies

Et

[
δθG

−θ/ψ
t+1 Rθ−1

m,t+1Ri,t+1

]
= 1 (13)

with SDF Mt,t+1 = δθG
−θ/ψ
t+1 Rθ−1

m,t+1, and the logarithm of SDF takes

mt+1 = θ log(δ)− θ/ψ∆ct+1 + (θ − 1)rm,t+1 (14)

with ∆ct+1 and rm,t+1 as the log of consumption growth and return of aggregate wealth.

2.4 General Equilibrium

Definition 2.1 A general equilibrium is a set of price and choice vectors - Pt = (P1t, ..., PJt),

Xijt, i, j ∈ [J ], Yit, φit, cit, i ∈ [J ],and Ct such that:

1. Given the price P t, Xijt and Yit, i, j ∈ [J ], solve producers’ problem 2.

2. Given the price P t, cit, i ∈ [J ] solve producers’ problem for final consumption goods 7.

3. Given the price P t, Vjt, the portfolio φjt,∀j ∈ [J ], and Ct solve consumer’s problem 12.

4. All markets for intermediates clear, cit +
∑

j∈[J ]Xjit = Yit, ∀ i, t.

5. Stock markets clear, φjt = 1,∀j, t.

2.5 Equilibrium Allocation

Here, we characterize the resource allocation in equilibrium. Because there is no fixed capital

and all intermediates are perishable, prices of the spot markets, resource allocation across

sectors, and final output can be solved statically as functions of At. Specifically, given the

productivity distribution At = (A1t, ..., AJt), the intermediate price vector P t, shadow price

vector λt, input-output matrix, output vector PY t = (P1tY1t, ..., PJtYJt), and aggregate

output Yt =
∑

j∈[J ] PjtYjt can be determined.
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Definition 2.2 Define the input-output matrix in equilibrium as

Θ̃t = (θ̃ijt)J×J (15)

with θ̃ijt =
PjtXijt
PitIit

as the input reliance of sector i on sector j.

Denote sale share of sector i as sit = PitYit∑
j∈[J] PjtYjt

that is a measure of sector i’s importance

in production space, the sale share vector as st = (s1t, ..., sJt)
′, and α = (α1, .., αJ). In the

following, all quantities are evaluated in equilibrium.

Proposition 2.1 In equilibrium, the sale share satisfies st = (1 − η)[I − ηΘ̃′t]−1α .When

the production technology is Cobb-Douglas, i.e., vi = 1,∀i ∈ [J ], we have Θ̃t = Θ, st = s,

with Θ = (θij)J×J and s = (1− η)[I − ηΘ̃′]−1α.

The proof for the general case is in appendix A.2. There are two things worth mentioning.

First, the share sit measures the importance of sector i in production space and is defined

recursively as the weighted average of the importance of sectors who rely on sector i’s output

as input. To make this point more clearly, we can write sit = (1−η)αi+
∑

j sjtθ̃jit. st is also

called the Katz centrality [Katz, 1953; Bonacich, 1987; Bonacich and Lloyd, 2001]. Second,

when the nested production function takes the form of Cobb-Douglas, the substitution effect

exactly cancels out the income effect when the input prices change. Consequently, the

expenditure share of sector i on its input j is constant, i.e., θ̃ijt = θij, and the importance

of each sector is constant over time. In general, the input-output matrix Θ̃t, and share st

depends on At. For details, please see the appendix A.2.

Definition 2.3 We define the adjusted input sparsity of sector j as

N θ
jt =

∑
i∈[J ]

θ̃jit log(θ̃jit) +
vj

1− vj

∑
i∈[J ]

θ̃jit log (
θ̃jit
θji

),∀vj 6= 1

with N θ
jt =

∑
i∈[J ] θji log(θji), ∀vj = 1.

Intuitively, the adjusted input sparsity captures the input diversity of the sector and the ex-

tent to which sector j can substitute its inputs away from each other. For the Cobb-Douglas

case, the adjusted input sparsity reduces to the usual one [Herskovic, 2018].12.

12In Figure 11, we use the BEA input-output data together with sectoral gross output data to estimate
the non-linear effect of adjusted sparsity on aggregate economic growth. More specifically, we decompose the
adjusted sparsity into the component proposed by Herskovic [2018] and the remaining part, and estimate
them separately.
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The following proposition shows that, even in a general nested CES production economy,

the growth of gross output can be decomposed into three components - concentration term,

sparsity term, and the Hulten term [Hulten, 1978].

Proposition 2.2 Denote N θ
t = (N θ

1t, ...,N
θ
Jt), in equilibrium.

1. Gowth of consumption is the same as that of output, ∆ct+1 = ∆yt+1.

2. The gross output and prices take the following form:

log(Yt) = s′t

[
− log(st) +

η

1− η
Nθ
t +

1

1− η
log(At)

]
+

η

1− η
log(η) +α′α

log(P t) = (I − ηΘ̃′t)−1
[
(1− η) log(st) + (1− η)1 log(Yt)− ηN θ

t − log(At)− η log(η)1
]
.

(16)

When vi = 1,∀i ∈ [J ], we have

log(Yt) = s′
[
− log(s) +

η

1− η
Nθ +

1

1− η
log(At)

]
+

η

1− η
log(η) +α′α

log(P t) = (I − ηΘ̃′)−1
[
(1− η) log(s) + (1− η)1 log(Yt)− ηNt

θ − log(At)− η log(η)1
]
.

(17)

The proof for the general case is in appendix A.2. The intuition of the first part in Proposition

2.2 is that the consumption is equal to total dividend, which is a constant fraction of the

total output. We emphasize the new results of this proposition - the aggregate output can

always be decomposed into three components even with general nested CES production.

1. The first term, 1
1−ηs

′
t log(At), is the usual linear term captured by Hulten’s theorem

[Hulten, 1978], [Baqaee and Farhi, 2019].

2. All the non-linear effects due to technology progress can be fully captured by two

sufficient statistics - the concentration indexN c
t = −s′t log(st), and the general adjusted

sparsity N s
t = s′tN

θ
t . The aggregate output increases with the concentration and the

adjusted sparsity.

3. The concentration term reflects the resource reallocation across sectors while the spar-

sity term reflects the resource reallocation within sectors. Specifically, when resources

are more concentrated in one sector, the concentration N c
t declines, and thus aggregate

output drops.
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Note that both the adjusted sparsity and the concentration depends on At. Thus, the im-

pact of the technology shock ∆at+1 on aggregate output works through three channels -

the usual Hulten channel s′t log(At), the concentration channel N c
t = −s′t log(st) capturing

resource reallocation across sectors, and the sparsity channel N s
t = s′tN

θ
t capturing the re-

source reallocation across inputs within the sectors. Previous literature has mostly taken

first-order approximation by simply assuming Cobb-Douglas technology [Hulten, 1978; Long

and Plosser, 1983; Acemoglu et al., 2016a; Herskovic, 2018]. Under the Cobb-Douglas as-

sumption, the concentration index and the adjusted sparsity are constant, with no effect

of technological shock on these two terms. Through taking second-order log-linear approx-

imation, Baqaee and Farhi [2019] find that the usual first-order log-linear approximation

significantly underestimates the macro effect of micro shocks, due to missing reallocation

effects. Different from them, we find that all of the non-linear terms can be sufficiently

captured by the concentration and adjusted sparsity, which can be estimated from real data.

This enables us to directly measure the relative contribution of the concentration and ad-

justed sparsity terms to aggregate fluctuations [Yang and Zhu, 2020].

3 Networks, Amplification, and Persistence

This section presents our main results on the interactions of cross-sectional shock, innovation

network, and production network. These interactions allow us to decompose the effect of the

initial shock on future growth into J components. Each component includes its amplification

and persistence. We further show that persistence can be captured by the eigenvalues of the

innovation network, while two sufficient statistics can characterize the amplification. This

decomposition clearly shows how the structure of the cross-sectional shocks and networks

matter in amplifying the shock and making it persistent.

3.1 Basic Results

We consider the Cobb-Douglas case that enables us to get a closed-form solution13. Let

gt+1 = ∆yt+1, which is the growth of aggregate output:

gt+1 =
1

1− η
s′∆at+1. (18)

13For the general case, we still can make a similar decomposition through log-linear approximation.
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The forward expectation of period t+ τ at period t would be

Etgt+τ =
1

1− η
Ets′∆at+τ =

s′

1− η
Etµt+τ , (19)

where Et[·] is the expectation conditional on {As, s ≤ t}. Equation 19 follows from 11 and

the condition that EtεAt+τ = 0, ∀τ ≥ 1. From equation 11, we have

Etµt+τ = [(1− ρ)I +W ]Etµt+τ−1 = [(1− ρ)I +W ]τµt. (20)

Thus, an initial shock to µt will change the growth prospects of period t+ τ , the persistence

of this effect depends on the structure of the innovation network W 14. Suppose there is an

initial shock to the arrival rate: µt → µt + εt, the associated effect of this initial shock on

the growth and the arrival rate at t+ τ is denoted as δgt+τ and δµt+τ
15.

Proposition 3.1

Etδµt+τ = [(1− ρ)I +W ]τεt

Under Cobb-Douglas, the effect on the growth is

Etδgt+τ =
ε′t

1− η
[(1− ρ)I +W ′]τst.

Alternatively, we have that Etδgt+τ = ε′t[(1− ρ)I +W ′]τ [I − ηΘ̃′]−1α.

3.1.1 Symmetric Technology Diffusion Matrices

We first consider a symmetric innovation network which has been implictly assumed in empir-

ical studies W Jaffe [1986]; Jaffe, Trajtenberg, and Henderson [1993]; Bloom, Schankerman,

and Van Reenen [2013] to deliver our main intuition. The asymmetric case will be discussed

the subsection 3.1.2.

Definition 3.1 Denote the ith largest eigenvalue of matrix W ′ as λi(W
′), and the corre-

sponding orthonormal eigenvector as vi, i.e. W ′vi = λi(W
′)vi such that (vi,vj) = δij.

14It is also easy for us to calculate the conditional volatility of growth prospect

V art(µt+s) =

s∑
j=1

(I + W̃ )s−j(σ2
u + σ2

AWW ′)(I + W̃ )s−j (21)

15Here, δ is an operator indicating a change, don’t confuse it with a scaler. This shock can be either from
the realization shock of innovation zAt or zut
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Here, (x1,x2) is the inner product of vectors x1 and x2, and δij is the Kronecker delta. Note

that, in general case, we always have λi(W ) = λi(W
′).

Lemma 3.1 Suppose W is symmetric, we have v1 ≥ 0, i.e., v1i ≥ 0, ∀i ≤ J .

Lemma 3.2 Suppose W , λi(W ), and vi are defined as in 3.1, then,

((1− ρ)I +W ′)svi = (1 + λi(W )− ρ)svi

The symmetry of W implies that (vi, i ∈ [J ]) spans the whole J dimensional linear space.

Thus, we can decompose the arrival rate as a linear combination of the eigenvectors vi.

Lemma 3.3 Suppose W is symmetric, we have µt =
∑J

i=1(µt,vi)vi with the loadings on vi

be (µt,vi). Similarly, we have st =
∑J

i=1(st,vi)vi.

Proposition 3.2 If W is symmetric,

Etµt+τ =
J∑
i=1

(1 + λi(W )− ρ)τ (µt,vi)vi

Several things are worth mentioning. First, we refer to, v1, the eigenvector associated with

the leading eigenvalue, as the eigenvector centrality of the network [Bonacich and Lloyd,

2001; Bonacich, 2007; Allen et al., 2019]. In our setting, it is intuitive to interpret v1,i as

sector i’s importance in creating and transmitting technology insights in technology space.

To see it clearly, we note that v1,i = 1
λ1(W )

∑
j v1,jWji. That is, sector i is important if sectors

who heavily learn insights from i are important.

Second, λi(W )− ρ captures the declining rate of the shock in the innovation network if the

shock is parallel to vi. To see that clearly, suppose the initial shock εt is proportional to vi,

the associated effect of the initial shock on the arrival rate of next period is [1−ρ+λi(W )]εt.

The intuition is straightforward. On one hand, the arrival rate of innovation declines by ρεt

due to the depreciation effect [Bloom et al., 2020]. On the other hand, the arrival rate of

innovation will be promoted by Wε = λi(W )εt due to the technology spillover from learning

if the shock is proportional to vi. Overall, the net effect would be (λi(W )− ρ)εt.

Third, the strength of the technology spillover depends on the shock’s direction. When

the shock follows the eigenvector centrality (the eigenvector associated with the leading

eigenvalue of the innovation network), the technology spillover is the strongest and will be

promoted by λ1(W ). However, when the shock follows the eigenvector associated with the

17



smallest eigenvalue, the spillover effect becomes the weakest. Overall, the direction of the

shock matters in the strength of the spillover effect. Finally, we have a singular value de-

composition of the symmetric matrix, W ′ =
∑

j λj(W )vjv
′
j, with v′ivj = δij.

If we decompose the initial shock into a linear combination of vi, i ≤ J , the effect of the ini-

tial shock on future arrival rate can be written as a decaying linear combinations of (εt,vi)vi.

The component parallel to v1 declines at the slowest rate, ρ−λ1(W ). Proposition 3.2 shows

that the ith component of the initial shock declines with the rate ρ− λi(W ).

Proposition 3.3 The expected effect of the cross-sectional shock εt on future growth can

be written as

Etδgt+τ =
1

1− η

J∑
i=1

(1− (ρ− λi(W )))τ (εt,vi)(vi, st). (22)

3.1.2 Asymmetric Technology Diffusion Matrices

When the matrix W is asymmetric, we assume the matrix is diagonalizable and its eigen-

vectors almost surely span the whole J dimension space. The assumption holds in empirical

data as shown in section 4.4. Thus, we can take eigenvector decomposition

W ′vi = λi(W )vi, i ≤ J (23)

with ρ > Re(λ1(W )) > ... > Re(λJ(W )). In section 4.4, we document that all eigenvalues

are approximately real in the sense that the imaginary part of each eigenvalue is negligible

compared to its real part. Under the diagonalizable assumption, we have results similar to

3.2 and 3.1

Proposition 3.4 Suppose W satisfies 23, we have

Etδgt+τ =
1

1− η

J∑
i=1

(1− ρ+ λi(W ))τ (εt,vi)(vi, st) (24)

In macro econometrics or finance, researchers usually think of growth as a process consisting

of several components with various frequencies (persistence) and loadings [King and Watson,

1996; Baxter and King, 1999; Müller and Watson, 2018], proposition 3.4 rationalizes this

decomposition by showing that we can decompose the effect of the shock on growth prospect

into J components with various levels of persistence and loadings. The main difference is that

we can only decompose the expected shock’s impact on the growth prospect into components
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but not the growth itself. The proposition further shows the sources of persistence and

loadings.

3.2 Network Structure, Persistence, and Amplification

In this subsection, we discuss in detail the importance of the innovation structure and the

direction of the cross-sectional in amplifying and persisting the effect on growth.

Proposition 3.5 PERSISTENCE

1. If ρ >> λ1(W ), the depreciation effect dominates the strongest technology spillover

effect, and the shock’s impact declines exponentially.

2. If ρ ≈ λ1(W ), consider two cases:

2.1 If the innovation network is low-rank so that λ1(W ) >> λi(W ), i ≥ 2, when the

shock is parallel to v1, its effect on future growth declines linearly; however, when

the shock is orthogonal to v1, its effect on future growth declines exponentially.

2.2 If the innovation network is high-rank that λ1(W ) ≈ λ2(W )... = λ. The effect of

the shock always declines by ρ− λ no matter the direction of the shock.

We emphasize the importance of part 2 in the theorem 3.5, where the strongest spillover

effect roughly cancels the depreciation effect. The theorem indicates that if the innovation

network is low-rank, the shock’s direction reveals useful information on the shock’s persis-

tence. Only when the shock follows a specific direction (leading eigenvector), the impact of

the shock become persistent. However, when the shock follows other directions, the impact

of the shock will decline quickly. The intuition is that the spillover effect becomes most

potent only when the shock following the eigenvector centrality.

On the contrary, when the network is not low-rank. In the extreme case, all the eigenvalues

are the same denoted as λ. The spillover effect will be the same no matter the direction of

the shock. As a result, the direction of the shock reveals no information on the persistence

of the impact. In fact, under this extreme case, we have

Etδgt+τ =
1

1− η
(1− (ρ− λ))τδgt (25)

as long as the initial aggregate effect of the shocks are the same, the future pathes of various

shocks will be exactly the same.
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In the empirical portion of the paper, we show that the innovation network of the US has

a low-rank structure. Besides, the strongest spillover effect roughly equals the depreciation

effect. Thus, only when the shock follows the direction of eigenvector centrality, the impact

becomes persistent empirically.

The amplification of the ith component is captured by two inner products - the inner product

between the shock and the ith eigenvector of the innovation network, and the inner product

between the ith eigenvector of the innovation network and the Katz-centrality of the pro-

duction network. The first inner product captures the amplification effect when shocks are

propagated in the innovation network, while the second captures the interactions between

the innovation and production networks. Consider the technology shocks to the oil produc-

tion and exploration sector and the cloud computing sector to illustrate the idea. The oil

sector is much larger and more important than the cloud sector in the production network 16.

However, few sectors learn insights from the oil sector’s innovation, but many sectors gain

insights to prompt their technology progress from the cloud’s. These sectors may account for

a significant share in production and be important in the innovation network. As a result,

a shock to the cloud sector can have a more substantial and persistent impact on aggregate

future growth than a similar shock to the oil sector. In the production network literature,

the amplification of the technology shock can be captured by the Domar weight [Liu, 2019].

In our setting, the inner product between the Katz- centrality in the production network and

the eigenvector centrality in the innovation network can be viewed as an alternative Domar

weight but adjusted by the sector’s importance in the innovation network.

3.3 Illustration: An Example

To emphasize the role of cross-sectional shocks in amplifying and persisting the effects of

shocks, we present a simple example. The basic insight is that the cross-sectional shock

reveals useful information on the recovery speed of the economy in the future beyond the

aggregate shock. Consider an economy with three sectors J = 3 with Cobb-Douglas pro-

duction technology and symmetric input-output production network. Thus, in equilibrium,

16In production network literature, a sector’s importance in the production network is usually measured
as its sale share [Baqaee and Farhi, 2019; Liu, 2019]. In the US, the oil sector’s sale share is much larger
than the cloud sector.
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st = (1/3, 1/3, 1/3). We further set the matrix representation of the innovation network as

W =

0.327 0.067 0.067

0.067 0.0467 0.0467

0.067 0.0467 0.0467


ρ = 0.4 and η = 0.35. W is chose to partly reflect the pattern in real data and partly

simplify the analysis. The eigenvalues are λ1(W ) = 0.36, λ2(W ) = 0.06, and λ3(W ) = 0.

Correspondingly, ρ − λ1(W ) = 0.04, ρ − λ2(W ) = 0.34, and ρ − λ2(W ) = 0.40. The

associated eigenvectors are v1 = 1
3
√
2
(4, 1, 1),v2 = 1

3
(−1, 2, 2),v3 = 1

2
(0, 1,−1). Consider

two scenarios of cross-sectional shocks.

• Scenario 1: ε1 = −1.5v1.

• Scenario 2: ε2 = −2.1v2.

Under scenario 1, the cross-sectional shock is parallel to the eigenvector centrality v1, sec-

tors in the center of the innovation network (sector 1) suffer much more than those in the

periphery of the network (sectors 2 and 3). In contrast, under scenario 2, the cross-sectional

shock is parallel to v2, sectors (sectors 2 and 3) in the periphery of the innovation network

suffer more than those in the center of the innovation network (sector 1). In our setting, the

aggregate effects on the current growth under the two scenarios are the same since

1

1− η
(st, ε

1) =
1

1− η
(st, ε

2) = −1.0.

However, the impact of the cross-sectional shock ε1 is much more persistent than that of ε2.

Figure 1 shows the effect of the shock on the growth in the next ten periods. As shown in

the figure 1, the aggregate effects of the two shocks are the same at period 0 with a decline

in aggregate output by 1%, while the effects on future growth are very different. Under

scenario 2, the negative effect shrinks sharply to −0.2% after four periods. However, under

scenario 1, the economy recovers very slowly and exhibits a staggering −0.75% growth even

after ten periods.
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Figure 1: The Effects of Cross-sectional Shocks on Expected Future Growth

Note: This figure shows the importance of cross-sectional shocks in persisting the effects of shocks on future

growth. Panel A shows the shows the recovery path with various shocks when innovation network takes

low-rank structure. Panel B shows the recovery path with various shocks when there is no innovation

network.

4 Model Estimation and Evaluation

The basic propositions 3.4 and 3.5 show the network structure and the sectoral distribution of

the shock play a crucial role in the amplification and persistence. The persistence of the shock

depends on the relative magnitude of the technology spillover effect and the depreciation

effect, while the amplification effect depends on (vi, εt) and (vi, s). In this section, we

describe in detail the estimation of parameters in the innovation process 11 and use different

datasets to estimate the technology shock from the model. Basically, in the data, we find

the innovation network takes a low-rank structure and the strongest spillover effect roughly

cancels out the depreciation effect, that is, λ1(W ) ≈ ρ and λ1(W ) � λi(W ), i ≥ 2. This

finding suggest that the direction of the shock reveals useful information on the recovery

path of the economy as discussed in Section 3.3. On the amplification, we find that there is

a large time-variation in (v1, εt) and stable (v1, s).

4.1 State Space Model

There are two main challenges in parameter estimation. First, we need some observable vari-

ables to proxy for the technology process ∆at. We consider three candidates - the patent,
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TFP, and R&D. All are imperfect proxies for the technology progress. Patents have been

widely used in the literature to measure technology innovation. The main problem is that

there is a time lag between invention usage and patent issuance released by the USPTO.

This problem becomes severe when using the estimated shocks in equation 11 to approximate

for εt due to lagged issuance. The problem using TFP as a proxy is that TFP reflects not

only technology progress but also many others like managerial skills, measurement errors, or

residuals due to model misspecification. To handle this problem, we extend our model so that

the observable TFP consists of an unobservable technology progress component following 11,

a latent variable that reflect others factors influencing the measured TFP like the managerial

skills, and an error term. That is, we model the unobservable technology process of the TFP

as one with technology learning, and the second part of the TFP as a non-learning process.

We then estimate an extended state-space-model. As shown in appendix A.1, R&D growth

is a good proxy for the resources deployed by firms to learn from others. It is a good proxy

for the technology progress in the future. Besides, the R&D data is too short, only available

after 1988. Table 1 shows comparisons of these three datasets.

The second challenge is the matrix W is of high dimension even if we only consider the

sector-to-sector innovation network at the three-digit level. Specifically, there are 87 sectors

at the three-digit NAICS level. Thus, we have 7569 parameters to be estimated if we impose

no restrictions on W . Given our short patent dataset between 1926 and 2014, TFP dataset

between 1987 and 2018, and R&D dataset between 1988 and 2018, we need to impose ad-

ditional restrictions on W to estimate the underlying parameters. Specifically, we write

W = ΞW̃ with Ξ = Diag(ξ1, ..., ξJ), ξi =
∑

jWij, and W̃ij =
Wij

ξi
. We use patent citation

dataset to directly estimate W̃ as in appendix C.1.2.

We write 11 in the form of state space model, and estimate all parameters with an Expectation-

Maximization (EM) algorithm. The problem is formulated as follows

Measurement Equation: ∆at = µt + εAt , with εAt ∼ N (0,ΣA) (26)

State Equation: µt+1 = (1− ρ)µt + ϕ(L)W t∆at + εut , with εut ∼ N (0,Σu) (27)

with W t = ΞW̃ t, ΣA = σ2
AI, and Σu = σ2

uI. Here, we write W t to indicate that we can

estimate the time-varying W̃ t using patent citation dataset. With a little abuse of notation,

we denote A = (1 − ρ)I. ϕ(L) =
∑

j≥0 ϕjL
j is to capture the more general learning from

history, with L the one-period lag-operator. The observable vector in period t is ∆at, the

unknown parameters are scalars σA, σu, ρ, J × J diagonal matrix Ξ.
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Under the setting 26, the parameters of the model are denoted as Θ = {ρ, ϕj,Ξ, W̃ t,ΣA,Σu}.
To overcome the challenges from high dimensionality, we impose further restrictions on the

parameters as shown in the table 2. For the ϕ(L), we suppose that ϕ(L) = ϕA
∑

j≥0(1 −
ϕA)jLj. In our state-space-model, we set ϕA = 0.05, 0.1, 0.2, and, 1.0, and find our estimates

are robust across various ϕA.

Denote ∆a0:t = (∆a0, ...,∆at), conditional mean and variance of µt given data until time

period τ as µt|τ and P t|τ . Denote conditional variance of ∆at+1 given data until time period

τ as F t|τ , the forecast as ∆at+1|τ , and the Kalman gain asKt. The EM algorithm to estimate

σA, σu, ρ and J × J diagonal matrix Λ proceed as follows:

E Step Given current guess/estimates17 of σA, σu, ρ and Λ, use Kalman filter and Kalman

smoother to calculate the conditional mean µt|T and covariance P t|T of latent states µt given

all the observed data.

E Step (1): Kalman filter Starting from t = 0 with initial guess µ0|0,P 0|0, while t < T

we calculate:

a. µt+1|t = Aµt|t +W∆at

b. P t+1|t = AP t|tA
′ + Σu

c. ∆at+1|t = µt+1|t

d. F t+1|t = P t+1|t + ΣA

e. P t+1|t+1 = P t+1|t −Kt+1P t+1|t

f. µt+1|t+1 = µt+1|t +Kt+1vt+1 with Kt+1 = P t+1|tF
−1
t+1.

E Step (2): Kalman Smoother Starting from t = T with µT |T ,P T |T from the Kalman

smoother, while t >= 0:

g. Lt = P t|tA
′P−1t+1|t

h. µt|T = µt|t +Lt(µt+1|T − µt+1|t)

i. P t|T = P t|t +Lt(P t+1|T − P t+1|t)L
′
t

17We use the VAR estimates when σA ≡ 0 as the initial guess in our calculation. In later iterations, we
always use the maximum likelihood estimators from the M step.
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M Step: Given the conditional mean and covariance of latent states µt and all the observed

data, we estimate all the parameters Θ = (σ2
A, σ

2
u, ρ,Ξ) with maximum likelihood estimation.

The estimators are

σ̂2
A =

1

J(T + 1)
Tr(E(

T∑
t=0

(∆at∆a
′
t −∆atµ

′
t − µt∆a′t + µtµ

′
t))|∆a0:T ) (28)

σ̂2
u =

1

JT

T−1∑
t=0

Tr(E((µt+1 −W∆at)(µt+1 −W∆at)
′ − (µt+1 −W∆at)µ

′
tA
′

−Aµt(µt+1 −W∆at)
′ +Aµtµ

′
tA
′|∆a0:T ))

(29)

ρ̂ = 1−
Tr(

∑T−1
t=0 E[(µt+1 −W∆at)µ

′
t + µt(µt+1 −W∆at)

′|∆a0:T ]

2
∑T−1

t=0 Tr(E[µtµ
′
t|∆a0:T ])

) (30)

ξ̂i =

∑T−1
t=0 E[(W̃∆at)i(µt+1 −Aµt)i|∆a0:T ]∑T−1

t=0 E[((W̃∆at)(W̃∆at)′)ii|∆a0:T ]
(31)

and Ξ̂ = diag{ξ̂1, ..., ξ̂K}. The detailed derivation can be found in the Appendix D.1. We it-

erate the E Step with new estimators of parameters, and the M Step with new conditional

mean and covariance until convergence. The proof of convergence for the EM algorithm in

our problem is in Appendix D.3.
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Table 1: Comparison of Different Data to Measure Technology Progress

Data Source Time Range Advantage Shortcoming
Patent Issuance USPTO 1926-2019 Long time range Lag in measurement

TFP BLS/BEA 1987-2018
Sectoral level

measure
Short time range;

more than innovation
R&D Expenditure Compustat 1977-2018 Direct R&D measure Sample bias change over time

This table presents the comparisons among three different datasets to Measure R&D Activities: the patent

issuance data, industry level TFP data, and the Compustat R&D expenditure data.

Table 2: Model Setup and Restrictive Assumptions

Model description Model parameter Restrictions
Covariance of measurement noise ΣA ΣA = σ2

AI
Covariance of shocks to innovation Σu Σu = σ2

uI

Lag polynomial for learning ϕ(L) =
∑

j≥0 ϕjL
j ϕ(L) = ϕA

∑
j≥0(1− ϕA)jLj

with ϕA = 0.05, 0.1, 0.2, 1

Learning matrix W t = ΞW̃ t
(1)W̃ t directly estimated with patent data

(2)Ξ = ξI in the simplified case.

This table presents the restrictions we impose on the parameters when estimate the model. The restrictions

are necessary to overcome the challenges of high dimensionality.
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4.2 Estimates with Patent Dataset

Here, we discuss in detail the parameter estimation based on equation 27 using patent

issuance data. For details about the estimation using TFP or R&D, see appendix B. From

our model, it is natural to interpret At as the productivity driven by technology innovation.

Denote Nit as the number of patents of sector i issued in year t, we proxy for Ait as

Ait = δA
∑
s≥0

(1− δA)sNit−s. (32)

That is, we assume that the contribution of the patent to the productivity declines over time

with depreciate rate δA. In estimation, we choose δA = 0.05, i.e., patents’ value on produc-

tion depreciates to zero after 20 years, which is consistent with 20 years patent protection.

Similar results on estimates are obtained for δA = 0.1 or δA = 0.2. ∆ait is estimated as

log(Ait)− log(Ait−1).

We first present estimates under a simplified case where σA = 0 and Ξ = ξI. The estimates

under the simplified case will be used as an initial guess for the general case in EM algorithm.

Under this simplified assumption, the model is reduced to

∆at+1 = (1− ρ)∆at + λ∆ãt + εut (33)

with ∆ãt = W̃ tϕ(L)∆at capturing the network effects.

Under the simplified assumption, the state-space-model is reduced to the usual panel regres-

sion. Table 3 reports the results with ϕA = 0.05, 0.1, 0.2, and, 1.0. Columns 1 and 2 report

the results when ϕA = 0.05. In column 1, we make seemingly OLS regression through pool-

ing all observations together, while column 2 reports the estimates after controlling for the

year and sector fixed effect. As shown in column 1, ρ(= 0.315) is very close to ξ(= 0.322),

indicating that the depreciation effect will be roughly canceled out by spillover effect when

the cross-sectional shock is parallel to the eigenvector centrality of the innovation network.

Column 1 shows that 1 − ρ + ξ = 1.007 that is very close to 1. Similar results are re-

ported in column 2 where 1− ρ + ξ = 1.002. The results are quite robust for various other

ϕA = 0.1, 0.2, and 1.0. In the case where ϕA = 1.0, 1− ρ+ ξ declines to 0.912 but still close

to 1. One possible explanation is the spillover effect is under biased since sectors can only

learn from the latest innovation when ϕA = 1.0.

For the general case without restrictions on Ξ = diag(ξ1, ξ2, ..., ξJ), we estimate the state-
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space-model using EM algorithm. Table 4 reports the results. Panel A reports the EM

estimates with homogeneous learning efficiency,i.e., ξi = ξ,while Panel B reports the EM

estimates with heterogeneous learning efficiency. Panel A reports results for various ϕA.

Column 1 shows results with ϕA = 0.05, we can see 1− ρ+ ξ(= 0.986) that is very close to

1. Furthermore, all results are robust across all columns. In panel B, we present the EM

estimates without restriction on Ξ. Besides the average of ξi, i ∈ [J ], standard deviation, 25th

and 75th percentiles of ξi, i ∈ [J ] are reported. In the final row, we report the 1−ρ+Ave(ξi),

where Ave(ξi) is the average of ξi. As shown in the table, 1− ρ+ Ave(ξi) is very close to 1

and roust across various ϕA.
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Table 3: Parameters of the Innovation Network

Panel Regression with assumption σA = 0 and Λ = λI

ϕA = 0.05 ϕA = 0.1 ϕA = 0.2 ϕA = 1.0

1− ρ 0.685*** 0.643*** 0.678*** 0.641*** 0.671*** 0.639*** 0.668*** 0.641***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

λ 0.3218*** 0.359* 0.299*** 0.401*** 0.287*** 0.364*** 0.244*** 0.140*
(0.0224) (0.192) (0.020) (0.135) (0.0019) (0.104) (0.017) (0.072)

Sector Fixed Effect No Yes No Yes No Yes No Yes
Year Fixed Effect No Yes No Yes No Yes No Yes

σu 0.0442 0.0441 0.0441 0.0441

R-Square 0.552 0.412 0.553 0.413 0.553 0.413 0.551 0.412
This table presents the parameter estimates under a simplified assumption that σA = 0. Under this as-

sumption, our estimate equation is reduced to

∆at+1 = (1− ρ)∆at + λW̃ϕ(L)∆at + εut

with ϕ(L) = ϕA
∑
j≥0(1−ϕA)jLj . Columns 1-2 report the estimates with ϕA = 0.05. Besides reporting the

estimates of 1 − ρ,λ, and σu based on our model, we also report the results with controlling for the sector

and year fixed effects. Columns 3-8 report similar results under various value of ϕA. Robust standard errors

in parentheses with *** p<0.01, ** p<0.05, * p<0.1.

29



Table 4: EM Estimates of the Innovation Network with Patent Data

Panel A: EM estimates with assumption that Ξ = ξI
ϕA = 0.05 ϕA = 0.1 ϕA = 0.2 ϕA = 1.0

1− ρ 0.823 0.818 0.814 0.817
ξ 0.163 0.149 0.140 0.130
σu 0.0322 0.0324 0.0325 0.0316
σA 0.0237 0.0235 0.0234 0.0243

1− ρ+ ξ 0.986 0.967 0.958 0.947

Panel B: EM estimates with general Ξ
ϕA = 0.05 ϕA = 0.1 ϕA = 0.2 ϕA = 1.0

1− ρ 0.791 0.779 0.770 0.780
Mean of ξj, j ∈ [J ] 0.198 0.187 0.182 0.162

Standard Dev of ξj, j ∈ [J ] 0.160 0.141 0.131 0.113
25th percentile of ξj, j ∈ [J ] 0.099 0.090 0.093 0.095
75th percentile of ξj, j ∈ [J ] 0.298 0.264 0.266 0.238

σu 0.0332 0.0336 0.0339 0.0324
σA 0.0227 0.0222 0.0220 0.0235

1− ρ+ ξ(ξ = Mean of ξj, j ∈ [J ]) 0.989 0.966 0.952 0.942

This table presents the parameter estimates using EM algorithm (for details, please see the appendix).

In Panel A, we impose an assumption that Ξ = ξI - all sectors share the same parameter ξ. In Panel

B, we remove this restriction and allow for heterogeneity in ξ across sectors. For the general case that

Ξ = diag(ξ1, ..., ξJ) in Panel B, we also report the mean, standard deviation, 25th and 75th percentiles. In

both panels, columns 1-4 report the results with ϕA = 0.05, 0.1,0.2, and 1.0.
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4.3 Estimates with TFP Dataset

Since TFP not only captures the technology progress but also many others that influence

firms’ productivity like managerial skills. We slightly extend our model to

ãt = at +mt, (34)

with ãt = (ã1t, ..., ãJt) the log of the observable TFP at the three-digit NAICS level,

at = (a1t, ..., aJt) the component driven by technology progress, and mt = (m1t, ...,mJt)

the component beyond the technology like managerial skills. We further assume mt follows

AR(1), mt = ρmmt−1 + εmt . That is, different from the technology side, there is no spillover

effect for the process mt. For details on the estimation using TFP, see appendix B.

Since the TFP data is only available after 1987, much shorter than than the patent data, we

further assume that Ξ = ξI. Thus we only need to estimate ρ, ρm, ξ, σ
2
u, σ

2
a, σ

2
m. Using the

state space estimation algorithm in Appendix D, the estimation results are reported in Table

5. Similar to the estimation results with patent data, 1−ρ+ξ is 0.976 that is very close to 1.

With the parameter estimates, we can recover the technology shock to the process εut , and

investigate its inner product with the eigenvector centrality of the innovation network over

time. In Figure 9, we plot the inner product of the technology shocks and the leading

eigenvector of the innovation network over time. The grey shadow area indicate the NBER

recessions. We can see that during the Great Recession of 2008, the negative TFP shock

gets mostly amplified through the innovation network.

Overall, the estimate indicates that the strongest technology spillover effect will cancel out

the depreciation effect. Consequently, when the cross-sectional shock highly correlates with

the eigenvector centrality of the innovation network, the effect of the shock on future growth

will become very persistent and amplified. If the shock is adversary, we will expect the

economy to experience a prolonged recovery in the following years.
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Table 5: EM Estimates of the Innovation Network with TFP Data

EM estimates with assumption that Ξ = ξI
Estimates Standard error

ρ 0.2227 0.006
ξ 0.1990 0.023
ρm 0.5062 0.006
σu 0.0001 2.14×10−5

σa 0.0011 2.43×10−5

σm 4.754×10−8 4.43×10−5

1− ρ+ ξ 0.9763 -

This table presents the parameter estimates using EM algorithm (for details, please see the appendix). For

simplicity, we impose an assumption that Ξ = ξI - all sectors share the same parameter ξ.
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4.4 Empirical Facts

In the previous section, we show λ1(W ) ≈ ρ - the strongest technology spillover roughly

cancels out the depreciation effect. This sectional documents several facts about the structure

of the innovation network, the coincidence between the innovation and production network,

and the inner product between the sectors’ importance in the innovation network and the

cross-sectional shock.

Fact 1. The innovation network is low-rank in the sense that λ1(W ) >> λi(W ), i ≥ 2.

Fact 2. The innovation network has non-negligible overlapping over the production network in

the sense that (v1, st) >> (vi, st), i ≥ 2.

Fact 3. Across recessions in the US, recessions with slow recovery are those witnessing sizable

negative shock to sectors in the center of the innovation network.

Based on our basic results in 3.4, fact 1 combined with λ1(W ) suggests that the shock’s im-

pact will be persistent only if the shock follows the eigenvector centrality of the innovation.

If the shock is orthogonal to the eigenvector centrality, the shock will decline exponentially

roughly at the rate of ρ (since λ2(W ) << ρ).

Fact 2 suggests that the amplification (v1, s)(v1, εt) will be non-negligible if the shock follows

the sectoral importance in the innovation network. Fact 3 is the key that is the main

implication of our theory. That is, when the innovation network takes a low-rank structure,

the strongest spillover effect roughly equals the depreciation effect, and (v1, s) are non-

negligible, the amplification and persistence depends on (v1, εt).

4.4.1 Sparsity of the Innovation Network

This section documents the structure of the standardize innovation network W̃ , similar

patterns are observed for W based on state-space model estimation. Figure 2 shows the

heatmap of the matrix W̃ of year 2014 at the three-digit NAICS level. First, there are several

industries (e.g., Sector 334: Computer and Electronic Product Manufacturing; Sector 541:

Professional, Scientific, and Technical Services18) playing a key role in providing technology

insights to nearly all other sectors. Second, most sectors digest the insights from others but

providing little knowledge to others(e.g., sectors between 441 and 512 in NAICS code).

Fact 1.1: The innovation matrix is highly asymmetric. Some sectors play critical roles

in yielding insights to others, while others mainly digest knowledge.

18The industry description correspondence to three-digit NAICS code can be found in the NAICS manual
on this webpage, last accessed on Jan 6, 2020.
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Figure 3 shows histogram distribution on the eigenvalues of W̃ in 2014. Note that the

eigenvalues of the standardized matrix can be complex due to high asymmetry. The left

panel shows the histogram on real part of eigenvalues, while the right panel shows the

corresponding imaginary part. There are two basic facts:

Fact 1.2: On the real part of the eigenvalues, λ1(W̃ ) >> λi(W̃ ), i ≥ 2. Furthermore,

the eigenvalues are approximately real.

As shown in the left panel of figure 3, the distribution of the eigenvalues is low-rank that

the largest eigenvalue is much larger than the rest in absolute value. Specifically, the sec-

ond largest eigenvalue is roughly 20% of the largest one. Second, the imaginary part of the

eigenvalue is tiny compared to its real part. As shown in the right panel of figure 3, the

imaginary part is of the order of 10−5 that is negligible either relative to the real part or in

the magnitude itself.

To show the concentration of the eigenvalue distribution for the matrix W̃ , we define a

concentration measure as

Concj(W̃ ) =

∑
i≤j |λi(W̃ )|∑
i |λJi=1(W̃ )|

with | · | the norm of a complex number. Concj(W̃ ) measures the fraction of the largest

j eigenvalues to all eigenvalues. Figure 4 shows the time-varying Concj(W̃ ), j ∈ 1, 5, 10

from 1951 to 2014. Over years, the concentration is quite stable. The largest eigenvalue con-

tributes to 1/3, the largest five eigenvalues contribute to 60%, and the largest ten eigenvalues

contribute to 75%, of the
∑

j |λj(W̃ )|. In summary, one only needs to focus on the first sev-

eral largest eigenvalues and the projection of the shock onto the associated eigenvectors if ρ

and ξ are non-negligible.
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Figure 2: Sparsity of Technology Spillover across Technology Classes

Note: This figure illustrates the knowledge diffusion matrix W̃ in 2014. In year 2014, there are 87 sectors

at three-digit NAICS level. X-axis represents sectors with knowledge flow out, and Y-axis represents sectors

learning from others. The color indicates the magnitude of the knowledge flow W̃ij , the deeper the color at

(i, j) is, the larger the W̃ij is. For example, as shown in the figure, sector 334 (Computer and Electronic

Product Manufacturing, see the NAICS Manual on this webpage for detail) and sector 541 (Professional,

Scientific, and Technical Services) are very important in generating knowledge to others since nearly all other

sectors intensively learn from it.
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Figure 3: Distribution of Eigenvalues of the Standardized Innovation Network

Note: This figure illustrates the sparsity of the eigenvalue distribution of innovation diffusion matrix W̃ in

2014. We standardize the diffusion matrix such that the largest eigenvalue is one. In year 2014, there are

87 sectors at three-digit NAICS level, and the matrix W̃ is constructed at three-digit NAICS level. The

left-panel of the figure shows the real parts of the eigenvalues and the right-panel shows the imaginary parts

of the eigenvalues. We can see that the largest eigenvalue is much larger than the others in magnitude.

The eigenvalues of the diffusion matrix are nearly real since the imaginary components are much smaller in

magnitude compared to the real parts.
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Figure 4: Concentration of the Eigenvalue Distribution for the Innovation Network

Note: This figure illustrates the sparsity on the eigenvalue distribution of innovation diffusion matrix W̃ over

years. We construct our innovation network each year from 1951 to 2014, and then standardize the matrix

such that the largest eigenvalue of the diffusion matrix is one each year (for detail on the construction of W̃ ,

see the appendix C.1). Specifically, we calculate the concentration of eigenvalues as Conci =
∑

j≤k ξj(W̃ )∑
j≤k λj(W̃ )

, j ∈
{1, 5, 10} that measures the relative magnitude of the largest k eigenvalues to the rest.
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4.5 Coincidence of Innovation and Production Networks

Proposition 3.4 shows that the amplification effect of the shock crucially depends on the

inner product (vi, st) when the shock follows vi’s direction. This subsection documents the

stylized facts on the inner product. As shown in 3.4 and 5.3, the amplification effect of the

initial shock depends on the (vi, s), i ∈ [J ]. If (v1, s) ≈ 0, the net effect will still be small due

to the tiny loading of the persistent component even though ρ − λ1(W ) ≈ 0. This section

indicates that this is not the case.

Fact 2.1: (v1, s) >> (vi, s), i ≥ 1, this pattern is quite stable over time.

Fact 2.2: (v1, s) increases steadily from 0.06 in 1947 to 0.10 in 1980, and then declines

to 0.08 recently.

Note that if sectors were indifferent in the innovation network, (v1, s) would have been

1/J ≈ 0.011 << 0.06. Thus, overall, important sectors in the innovation network are more

likely to be important in the production network. Figure 5 shows (vi, st), i ∈ [J ], of the

year 2014. It shows that (v1, st) is much sizable than the other (vi, st), i 6= 1. To check

the trend of (vi, st) over time. Figure 6 shows the inner product between the sector share

and the eigenvectors associated with the largest five eigenvalues from 1947 to 2017. Over

the past 70 years, among all the inner products, (v1, st) is the largest one and much sizable

than the rest. Another interesting finding is (v1, st) increases steadily from roughly 0.06 at

the beginning of the 1950s to more than 0.1 in the 1980s and then declines to roughly 0.08

recently.
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Figure 5: Coincidence between the Innovation and Production Networks

Note: This figure illustrates the coincidence of the eigenvectors of innovation diffusion matrices and firms’

importances in production network - the inner product (vi, s) - based on the knowledge diffusion matrix and

production network in 2014 (for details, please see the appendix C.1). Both the innovation diffusion matrix

and the output-share vector are constructed at three-digit NAICS level. vi is the eigenvector associated with

the ith largest eigenvalue of the knowledge diffusion matrix. s is the vector output share (Katz Centrality in

the production network). For the eigenvectors associated with the first several largest eigenvalues, the inner

product (v1, s) is much larger than the rest.
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Figure 6: Coincidence of the innovation and Production Network Overtime

Note: This figure examines the coincidence of the eigenvectors of knowledge diffusion matrices and firms’

importances in production network - the inner product (vi, s) - over years from 1947 to 2014 (for details,

please see the appendix C.1). At each year t, we construct output share of each sector at three-digit NAICS

level based on the sectoral output from BEA or BLS, and the knowledge diffusion matrices at three-digit

NAICS level based on patent datasets. The figure shows the time trend of the first five inner products (s,vi)

associated with the largest five eigenvalues of the innovation diffusion matrix each year.
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4.6 Coincidence between vi and Shocks

In the previous sections, we have shown the strongest spillover effect cancels out the depre-

ciation effect (λ1(W ≈ ρ), the innovation network takes a low-rank structure (λ1((W )) >>

λi((W )), ∀i > 1), and large (v1, s). If the channel in the proposition 3.4 does work, we expect

the economy to experience a prolonged recovery if (v1, εt) experiences a large drop, that is,

important sectors in the innovation network suffer much more than those less important ones.

Figure 7 shows the moving average GDP growth of the US since 1955. There is a consid-

erable variation in the recovery period that the economy takes to move back to its average

growth trend. For example, during the great recession of 2008, it takes more than ten years

for the economy to move back to its average growth trend. However, in other episodes, the

economy quickly recovers back to the growth trend like the recessions in the 1970s triggered

by the oil crises.

Figure 7: Moving Average of Annual Real GDP Growth
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Note: This figure shows the moving average of the annual real GDP growth of the US.

To show the (v1, εt) across recessions, we estimate it based on the state-space model. As

discussed in 4.1, each measure suffers from problems when we use the patent, TFP, and

R&D to proxy for the current or future technological progress. We should be cautious about

the interpretations. Specifically, using patent as a measure of the technology progress may

be subject to a severe lagging problem, TFP may capture too much beyond the technology

progress, while the R&D is a good proxy for the future technological progress but not now.
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Figure 8 shows (v1, εt) across time but using the patents to proxy for technology progress as

in 4.2. As we expected, during the great recession of 2008, the inner-product drops sharply

but modest during other recessions. Another concern is the shock to the patent issuance is

just a reflection of resources available to the US Patent Office.

Figure 8: Inner Product between the Eigenvector Centrality and the Shock (Measured by

Patent Issuance)

Note: This figure shows the inner product between the sectoral importance and the estimated technology

shock. Here, we use the patent issuance to proxy for the technology progress and use the state-space-model

to recover the underlying shock as discussed in section 4.2 .

To overcome this problem, Figure 9 plots the inner product between the sectoral importance

in the innovation network and the shock. The cross-sectional shock is estimated as in section

4.3, where we explicitly model the TFP process as a combination of technological progress

and the process beyond spillover. The shock used in figure 9 is the shock to technology

progress. Similarly, we find that (v1, εt) experiences a significant drop to -0.02 during the

great recession.
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Figure 9: Inner Product between the Eigenvector Centrality and the Shock (Measured by

TFP)
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Note: This figure illustrates the coincidence of technological shocks and the leading eigenvector of the

knowledge diffusion matrices over time. Both the innovation diffusion matrix and the technological shocks

are constructed at three-digit NAICS level. The grey shadow area plots the NBER recessions. We can

see that during the Great Recession, the negative technological shocks get mostly amplified through the

knowledge diffusion network.

Does the drop along the direction of the sectoral importance matters at the aggregate level?

Let us consider the great recession of the 2008 when (v1, εt) ≈ −0.02 and (v1, s) ≈ 0.10,

and use the equation for the first component in

Etδgt+τ =
1

1− η

J∑
i=1

(1− ρ+ λi(W ))τ (εt,vi)(vi, st) (35)

The parameter on the return to scale is η = 0.35 following Herskovic [2018], and ρ−λ ≈ 0.02.

Thus, during the great recession of 2008, this shock leads to a nearly permanent drop in the

GDP growth by 0.3 percent, the impact of this shock declines by half after 35 years. This

aggregate effect is large compared to 3 percent of the long-run growth for the US. Another
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point is to compare with the deviation from the long growth trend. As shown in figure 7,

ten years later, the moving average of the GDP growth is still lower by 0.4 percent relative

to the growth trend. Thus, the 0.3 percent drop accounts for roughly 75% of such deviation.

4.7 Cross-Sectional Evidence across Recessions

In this subsection, we use the growth in R&D expenditure to proxy for the shock to the

sector’s arrival rate of innovation. This proxy is motivated by our micro foundation A.1,

where we show that the R&D expenditure is proportional to the potential knowledge from

which firms can learn. Intuitively, R&D expenditure is a good proxy for the arrival rate of

future innovations.

Since the quarterly R&D is only available after 1988, we can only compare the cross-sectional

change in R&D expenditure in three recent recessions - 1991, 2001, and the Great Recession

of 2008. We first document that sectors playing critical roles in the innovation network suffer

much worse, measured by the R&D growth, in the Great Recession than that in the recessions

of 1991 and 2001. Specifically, we first calculate the R&D expense changes of sectors at the

three-digit NAICS level, we then assign each sector into one of the five groups based on its

eigenvector centrality, vi, of the last year. We construct dummies Eigenitd, d = 1, 2, 3, 4, 5.

Eigenitd is 1 if the sector i’s eigenvector centrality, at the beginning of period t, falls between

20× (d− 1) percent and 20× d percent, otherwise 0. To examine how sectors with various

importance in the innovation network suffer differently between Great Recessions of 2008

and that of 1991 or 2001, we take the following specification

yit =
5∑
d=1

[αdEigenitd + βdIt=crisis08 ∗ Eigenitd] + εit (36)

where yit is the R&D growth for sector i in episode t (1991, 2001 or 2008), It=crisis08 is the

episode dummy which equals to 1 if the episode is the 2008 crisis and 0 for the 1991 (or

2001) recession. Consider a comparison between the recessions of 2008 and of 2001, αd is

the average R&D growth of sectors in 2001, while βd measures the difference in the average

R&D growth in the recession of 2008 relative to 2001 within the dth group. For example,

a negative β5 indicates that sectors in the center of the innovation network suffer worse in

2008 relative to 2001.

Table 6 shows the basic regression results. Columns 1 and 2 examine the cross-sectional

difference of sectors in the exposure to the adversary shocks of 2001 and 2008. Column 1
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shows the results with equal weights across sectors, and column 2 shows the results with

the previous year’s sectoral R&D as weights. There are several things worth emphasizing.

First, in 2001, sectors in the periphery of the innovation network (sectors with eigenvec-

tor centrality in the bottom 20%) experienced a more significant drop in the R&D growth

than those in the center of the innovation network (with eigenvector centrality in the top

20%). However, this pattern reverses during the Great Recession. Sectors in the center of

the innovation network experienced a more significant decline in R&D growth than their

periphery counterparts. Second, compared to the recession of 2001, sectors with eigenvector

centrality in the top 20% experienced a further decline in the R&D growth by 14.8% with

equal weights, or 32.8% with R&D weighted in Great Recession. On the contrary, sectors in

the bottom 20% witnessed an increase in the R& D growth by 18.7% with equal weights or

12.3% with R& D weighted in the Great Recession.

Columns 3 and 4 show similar results when we compare the recessions of 1991 and 2008.

The Great Recession witnessed a much larger drop in R&D growth for sectors in the center

of the innovation network, relative to 1991. Specifically, during the Great Recession, sectors

with centrality in the top 20% experienced a sharp slide in the R&D growth by 24.9% with

equal weights or 26.8% with R&D weighted, relative to the recession of 1991.
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Table 6: Sector Centrality and R&D Expense Change over the Recessions

VARIABLES
R&D Change
(2001 vs 2008)

R&D Change
(2001 vs 2008)

R&D Change
(1991 vs 2008)

R&D Change
(1991 vs 2008)

Bottom 20% centrality -0.225*** -0.0711*** 0.0332 0.177***
(0.0639) (0.00822) (0.110) (0.0233)

20-40% centrality -0.0979 -0.0533*** 0.360 -0.0767***
(0.0910) (0.00233) (0.365) (0.00136)

40-60% centrality 0.0993 -0.0319*** -0.0479 -0.0330
(0.143) (0.000884) (0.0979) (0.0343)

60-80% centrality -0.0805 0.00669 -0.191 -0.0205***
(0.103) (0.00448) (0.141) (0.00374)

Top 20% centrality 0.00134 0.0705*** 0.103 0.0103***
(0.0468) (0.00111) (0.0967) (0.000630)

Bottom 20% centrality
× 2008 crisis

0.187 0.123*** -0.0705 -0.124***

(0.158) (0.0136) (0.182) (0.0257)
20-40% centrality
× 2008 crisis

0.0541 0.0814*** -0.404 0.105***

(0.128) (0.00485) (0.376) (0.00446)
40-60% centrality
× 2008 crisis

-0.0744 0.0364*** 0.0729 0.0375

(0.188) (0.00156) (0.157) (0.0343)
60-80% centrality
× 2008 crisis

0.0556 -0.335*** 0.166 -0.308***

(0.229) (0.00709) (0.250) (0.00665)
Top 20% centrality
× 2008 crisis

-0.148** -0.328*** -0.249** -0.268***

(0.0669) (0.00116) (0.108) (0.000713)
Observations 109 152,157 98 116,380

R-squared 0.078 0.657 0.078 0.816
Note: This table compare the R&D expense changes of sectors with different levels of eigenvector centrality

in recent recessions in the 1991, 2001 recessions and the Great Recession. As is noted by the coefficients of

Top 20% centrality × 2008 crisis, the most important sectors in the innovation network suffers significantly

more than other sectors in the Great Recession, while this is not the case for the 2001 and 1991 recessions.

Columns 1 and 3 are simple OLS, and Columns 2 and 4 are WLS weighted by sector R&D value. Robust

standard errors in parentheses with *** p<0.01, ** p<0.05, * p<0.1.
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5 Networks and Asset Pricing

In this section, we explore one application of the theory in asset pricing.

5.1 Networks and Pricing Kernel

In this section, we consider the implications of the theory on asset pricing. Intuitively, a

shock to the arrival rate at period t affects At at first. Through the propagation via the

innovation network, the effect will persist at periods s = t+ 1, t+ 2, ...∞. Thus, to link the

asset pricing with the network structure, the SDF Mt,t+1 must be linked to the consumption

growth of periods t+ s, s ≥ 2. Epstein-Zin preference enables us to establish such linkages.

Here, we will focus on the Cobb-Douglas production technology to obtain a closed-form

solution. For a more general case, we provide an approximation in Appendix A.2. To

obtain the intuition, we first focus on the case where companies learn only from the recent

innovations as 11. We discuss the general case in the next subsection. Under Cobb-Douglas,

we have

∆ct+1 = ∆yt+1 =
1

1− η
s′∆at+1

∆at+1 = µt + σAz
A
t+1

µt+1 = ((1− ρ)I +W )µt +WσAz
A
t+1 + σuz

u
t+1.

(37)

Under the E-Z preference, the logarithm of the SDF is

mt+1 = log(Mt,t+1) = θ log(δ)− θ

ψ
∆ct+1 + (θ − 1)rm,t+1. (38)

To solve for the logarithm of state price density, we need to pin down the equilibria market

return rm,t+1 as a function of the state variables. Denote the logarithm of price dividend

ratio for the aggregate dividend process as zt, the market portfolio return can be written as
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approximately [Campbell and Shiller, 1988] 19

rm,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt, (39)

with κ0 and κ1 are constant of log-linearization. From equation 37, µt are sufficient statistics

for future arrival rate µt+1 and ∆at+1. Besides, the future growth of consumption or dividend

linearly depends on µt. Thus, µt are the state variables of the economy. Conjecture that zt

is linear in the state variables: zt = b0 + b′1µt. Substituting 39 and the log of SDF into the

Euler equation:

Etexp(mt+1 + rm,t+1) = 1 (40)

The solution to the coefficients can be obtained with the method of undetermined coefficients

as below. The details of derivation are in Appendix ??

(1− κ1)b0 = log(δ) + κ0 +
θ

2
vart(rm,t+1 − 1/ψ∆ct+1)

b1 = − 1− ψ
ψ(1− η)

[I − κ1((1− ρ)I +W ′)]−1s
(41)

Substituting the expressions for rm,t+1 and the dynamics of ∆ct+1 back to the log of the

SDF in equation 38, we can express innovations in the pricing kernel in terms of underlying

shocks (risks).

19Specifically, denote

zt = log(
Wt −Dt

Dt
)

as the logarithm of the price-dividend ratio of the aggregate dividend process. Based on the definition of
market return, we have

Rm,t+1 =
Wt+1

Wt −Dt
=

1 + ezt+1

ezt
Dt+1

Dt
=

1 + ezt+1

ezt
Ct+1

Ct

since, in equilibrium, we have Ct = Dt. Thus,

rm,t+1 = log(1 + ezt+1)− zt + ∆ct+1

We take a linear approximation around z̄, the unconditional expectation of zt,

rm,t+1 = κ0 + κ1zt+1 − zt + ∆ct+1

with κ0 = log(1 + ez̄)− z̄κ1 and κ1 = ez̄

1+ez̄
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Proposition 5.1 (No Lagged Learning) Under the Cobb-Douglas,

mt+1 − Etmt+1 = −fm,0
s′

1− η
εAt+1 − fm,1

s′

1− η
[κ1((1− ρ)I +W )− I]−1[WεAt+1 + εut+1]

= −fm,0(Et+1 − Et)∆ct+1 − fm,1
s′

1− η
[I − κ1((1− ρ)I +W )]−1[Et+1 − Et]µt+1

(42)

with fm,0 = 1− θ+ θ/ψ = γ, and fm,1 = κ1(1− θ)(1− 1/ψ).The first term of equation 42 is

the one related to CCAMP, and the second term comes from the innovation network.

When θ = 1, the preference is time separable and the inter-temporal marginal rate of sub-

stitution (IMRS) only depends on the ∆ct+1, and the second part of 42 disappears since

fm,1 = 0. Consequently, only risks associated with the growth of consumption at period

t + 1(∆ct+1) are priced, while risks associated with the consumption growth in the future

like ∆ct+s,with s ≥ 2 are not priced. Thanks to the lagged knowledge diffusion effects - the

shock (Et+1−Et)µt+1 only affects consumption growth in the future, i.e., ∆ct+s, s ≥ 2, the

risks associated with the innovation network will not be priced.

When θ 6= 1, the SDF Mt,t+1 depends not only on the current consumption growth but also on

the continuation utility Ut+1 which in turn depends on the continuation consumption growth

∆ct+s, s ≥ 2. Therefore, shocks to future consumption growth are priced. A shock to µt+1

will affect the realized ∆at+2, which in turn changes the arrival rate in the future. Through

this propagation, the initial shock to the arrival rate will have a persistent effect on future

consumption growth and its effect on the marginal utility will be amplified significantly.

5.1.1 General Cases with Lagged Learning

In this section, we provide results when firms can learn from historical innovations beyond

the µt. Specifically, we model the arrival intensity as

∆µit+1 = −ρµit +
∑
j

Wijϕ(L)∆ log(Ajt+1) + εuit+1. (43)

Where ϕ(L) =
∑

s≥0 ϕsL
s and ϕ0 = 1, with L the lag-operator. Under this case, the state

variables at t include (µt,∆as,∀s ≤ t).

Proposition 5.2 (Lagged Learning Process) Under the general case 43, the innova-
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tion to the SDF takes the form of

mt+1 − Etmt+1 = −θ/ψ(ct+1 − Etct+1) + (θ − 1)(rm,t+1 − Etrm,t+1)

= −fm,0[∆ct+1 − Et∆ct+1]− fm,1
s′

1− η

[
I − κ1[(1− ρ)I + (1 + ψ0)W ]

]−1
×

[
εut+1 + (1 + ψ0)WεAt+1

]
(44)

with fm,0 = 1− θ + θ/ψ = γ, fm,1 = κ1(1− θ)(1− 1/ψ), and ψ0 =
∑

s≥1 κ
s
1ϕs. When firms

only learn from the most recent innovation, that is, ϕs = 0,∀s ≥ 1, then ψ0 = 0. The results

are reduced to the cases in equation 42. Allowing for more lagged learning does not change

our results too much qualitatively but make the SDF more volatile. For the proof of this

general result, see the appendix ??.

5.2 Nexus of Recovery and Cross-Sectional Asset Pricing

This section shows cross sectional returns provide information on the prospect recovery of

the economy. Denote the unexpected shock to arrival rate as εt+1 = [Et+1 − Et]µt+1 =∑
j∈[J ] αj,t+1vj, with αj,t+1 = (vj, εt+1) the loading of the shock on vj, j ∈ [J ].

From 42, we have

mt+1 − Etmt+1 =− fm,0(Et+1 − Et)∆ct+1

− fm,1
1− η

∑
j∈[J ]

[1− κ1 + κ1(ρ− λj(W ))]−1(s,vj)αjt+1.
(45)

Note that κ1 ∈ (0, 1) and very close to 1 empirically. When the shock [Et+1 − Et]µt+1 is

roughly parallel to the eigenvector centrality, the volatility of the log of the state price would

increase sharply. Empirically, we find that λj(M) and (s,vj) decline sharply as j increases.

Thus, only the first several eigenvectors play non-negligible role in asset pricing empirically.

Proposition 5.3 If the learning process satisfies 9, The expected return of any asset is

Et[rit+1 − rf,t+1] +
1

2
V art(rit+1) = fm,0Covt(ri,t+1, (Et+1 − Et)∆ct+1)

+
fm,1
1− η

∑
j

[1− κ1 + κ1(ρ− λj(W ))]−1(s,vj)Covt(ri.t+1, αjt+1),

(46)
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with fm,0 = 1− θ + θ/ψ = γ, and fm,1 = κ1(1− θ)(1− 1/ψ).

Proposition 5.4 For the more general learning process 10, the innovation of logarithm of

the SDF

mt+1 − Etmt+1 =− fm,0[∆ct+1 − Et∆ct+1]

− fm,1
1− η

∑
j

[1− κ1 + κ1(ρ− ψ0λj(W ))]−1(ε̃t+1,vj)(s,vj)
(47)

with ε̃t+1 = εut+1 + ψ0WεAt+1 and ψ0 =
∑

s≥0 ϕs. Furthermore,

Et[rit+1 − rf,t+1]+
1

2
V art(rit+1) = fm,0Covt(ri,t+1, (Et+1 − Et)∆ct+1)

+
fm,1
1− η

∑
j

[1− κ1 + κ1(ρ− ψ0λj(W ))]−1(s,vj)Covt(ri.t+1, α̃jt+1)
(48)

with α̃jt+1 = (vj, ε̃t+1), fm,0 = 1− θ + θ/ψ = γ, and fm,1 = κ1(1− θ)(1− 1/ψ).

There are several things worth mentioning:

1. The persistent impact of the initial shock is closely related to behaviors of asset prices

by comparing Equation 23 and Propositions 5.3 or 5.4. When the initial shock highly

correlates with the eigenvector centrality of the innovation network, its impact on

future innovation will become very persistent, while the SDF’s conditional volatility

will increase sharply.

2. Under the decomposition of Proposition 5.3, there are J factors, the number of sectors

in the market. The risk premium associated with factor j is

RPj =
fm,1
1− η

[
1− κ1 + κ1[ρ− ψ0λj(W )]

]−1
(s,vj) (49)

κ1 = ez̄

1+ez̄
, with z̄ the unconditional expected log of aggregate price-dividend ratio.

In real data, the parameter κ1 is close to but slightly smaller than 1, κ1 ≈ 0.997

[Campbell and Shiller, 1988; Bansal and Yaron, 2004]. Empirically, we document that

λj(W ) drops significantly, thus

2.1 If ρ is non-negligible, only factors such that ρ ≈ ψ0λj(W ) exhibit very high risk-

premium. Combining the fact that λj(W ) drop sharply, we conclude that only

the first several factors are important in practice.
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2.2 If ρ is close to zero, then ρ − ψ0λj(W ) ≈ 0. Under this case, only factors with

large (s,vj) are important in practice.

3. The theory rationalize the long-run risk in a networked economy. When ρ ≈ ψ0λ1(W ),

and (s,v1) and (δµt+1,v1) are non-negligible, the impacts of the initial shock on future

growth are very persistent and significantly amplified. The pricing kernel becomes very

volatile and the expected market return rises sharply to compensate for the risk.

4. Besides the common preference parameter fm,1 shared by all network factors, the mag-

nitude of risk premium associated with the jth factor depends on [1 − κ1 + κ1(ρ −
ψ0λj(W ))]−1 and (s,vj). The first term depends on the eigenvalue distribution of the

innovation network while the second captures the interaction between the production

and innovation networks.

Empirically, remember ψ0 = 1, λ1(W ) ≈ 1, and ρ ≈ λ1(W ), thus the volatility of the

pricing kernel is proportional to (1− κ)−1 ≈ 330 when the cross-sectional shock follows the

eigenvector centrality of the innovation network. On the contrary, if there is no technology

spillover, the pricing kernel is proportional to (1 − κ + ρ)−1 ≈ 3 since ρ ≈ 0.3. As a

result, due to the technology spillover and the low rank structure of the innovation network,

the volatility of the pricing kernel is amplified to 100 folders when the shocks follows the

eigenvector centrality of the innovation network. This amplified volatility can well explain

the risk-premium and risk-free rate puzzles even for a modest risk-averse coefficient [Mehra

and Prescott, 1985; Bansal and Yaron, 2004].

6 Conclusion

In this paper, we propose a production economy incorporating both the innovation network

and production network. We examine the dynamic interactions among the cross-sectional

shock to technology progress, innovation network, and production network. We emphasize

the crucial role of the network’s structure and shock’s sectoral distribution in the amplifica-

tion and persistence of the shock’s impact.

We first show that the technology spillover effect depends on the direction of the shock to

technology progress. The economy exhibits a stronger technology spillover effect when the

shock parallels the sectoral importance (i.e., eigenvector centrality) in the innovation net-

work. On the contrary, the spillover effect becomes weakest when the shock is parallel to

the eigenvector associated with the smallest eigenvalue of the innovation network.
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Several facts on the structure of the innovation network and the cross-sectional shocks are

documented in this paper. The empirical evidence suggests that the US’s innovation net-

work has a low-rank structure so that the leading eigenvalue dominates in magnitude the

remaining ones of the innovation network. Furthermore, the most potent spillover-effect

roughly cancels out the depreciation effect of the technology shock. The unique structure

implies that the shock’s sectoral distribution reveals information on the economy’s recovery

path when an adverse shock hits the economy. Specifically, conditional on the shock’s initial

aggregate effect, the economy will experience a prolonged recovery process only if important

sectors in the innovation network suffer more than their counterparts. However, the economy

will recover quickly from the recession if the shock follows other directions. This channel

indicates that the sectors’ heterogeneous exposure to the technology shock plays a vital role

in shaping the prolonged slow recovery. Thus understanding why some crucial sectors in

the innovation network suffer more during some recessions while suffering much less during

other episodes is an important research topic in the future.

Besides the persistence, we show that two sufficient statistics fully capture the shock’s am-

plification effect. The first is the inner product between the cross-sectional shock and the

sectoral importance in the innovation network. This coefficient captures how shocks are

propagated through the technology innovation-network. The second coefficient is the inner

product between sectors’ importance in the innovation network and their importance in the

production network. This coefficient captures how the initial technology shocks are propa-

gated from the innovation network to the production network.

We document a stable and robust interaction between the innovation network and produc-

tion network. The shock will be amplified significantly when the shock parallels the sectoral

importance in the innovation network (i.e., the eigenvector centrality). Empirically, we

document that the pivotal sectors in the innovation network suffer much more than their

periphery counterparts during the great recessions of 2008. In contrast, this pattern reverses

during other recessions like the recession of 1998 or 2001.

References

Daron Acemoglu, Vasco M Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. The
network origins of aggregate fluctuations. Econometrica, 80(5):1977–2016, 2012.

Daron Acemoglu, Ufuk Akcigit, and William Kerr. Networks and the macroeconomy: An

53



empirical exploration. NBER Macroeconomics Annual, 30(1):273–335, 2016a.

Daron Acemoglu, Ufuk Akcigit, and William R Kerr. Innovation network. Proceedings of
the National Academy of Sciences, 113(41):11483–11488, 2016b.

P Aghion and P Howitt. A model of growth through creative destruction. Econometrica, 60
(2), 1992.

Mohammad Ahmadpoor and Benjamin F Jones. The dual frontier: Patented inventions and
prior scientific advance. Science, 357(6351):583–587, 2017.

Franklin Allen, Junhui Cai, Xian Gu, Jun”QJ” Qian, Linda Zhao, and Wu Zhu. Ownership
networks and firm growth: What do five million companies tell about chinese economy.
Working Paper, 2019.

Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

Diego Anzoategui, Diego Comin, Mark Gertler, and Joseba Martinez. Endogenous tech-
nology adoption and r&d as sources of business cycle persistence. American Economic
Journal: Macroeconomics, 11(3):67–110, 2019.

Enghin Atalay. How important are sectoral shocks? American Economic Journal: Macroe-
conomics, 9(4):254–80, 2017.

Ravi Bansal and Amir Yaron. Risks for the long run: A potential resolution of asset pricing
puzzles. The Journal of Finance, 59(4):1481–1509, 2004.

David Rezza Baqaee. Cascading failures in production networks. Econometrica, 86(5):1819–
1838, 2018.

David Rezza Baqaee and Emmanuel Farhi. The macroeconomic impact of microeconomic
shocks: beyond hulten’s theorem. Econometrica, 87(4):1155–1203, 2019.
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Table 7: Summary Statistics for Firms in Different Centrality Quantiles

Centrality Quantile
Average R&D Expense

($million)
Average Market Value

($million)
Average Book-to-Market

Value
Bottom 20% 4.57 2300.10 0.931

20-40% 13.21 2920.24 0.828
40-60% 14.36 3071.22 0.824
60-80% 27.75 2893.71 0.736

Top 20% 76.26 2867.46 0.832

Note: This table reports average R&D expenses, average market value (both in million of dollars), average

book-to-market value of Compustat firms in different centrality quantiles. To construct the table, each year,

we first sort all sectors (at three-digit NAICS level) into five groups based on the eigenvector centrality of

the last year. Within each group, we pool all the firm-year observations together and report their aggregate

R&D expense, the average market value, and the average Book-to-Market ratio. The sample period is from

1952 to 2014 at an annual frequency.
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Figure 10: Non-linear Effect from Change in Concentration

Note: This figure illustrates the non-linear effect from the change in concentration on growth. The real

blue line represent the growth from the concentration effect(indexed by the left y-axis). The dash green line

represents the detrend real growth(indexed by the right y-axis). At year t, we calculate the concentration

as N c(t) = −
∑
j sjt log(sjt) with sjt is the output share of sector j at the three-digit NAICS level at the

end of calendar year t. We construct the output share of three-digit NAICS sector from the output table

by sectors provided by the BEA and BLS. The non-linear growth effect from change in the concentration at

year is defined N c(t)−N c(t− 1). This concentration effect reflects the contribution of resource reallocation

across sectors to the growth.
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Figure 11: Non-linear Effect from Change in Sparsity
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Note: This figure illustrates the non-linear effect from the change in the adjusted sparsity on growth, the
resource reallocation within the sector. We decompose the adjusted sparsity Ns

it into two components Ns,1
it

and Ns,2
it with Ns,1

jt =
∑
j θijt log(θijt) and Ns,2

jt =
∑
j θij log(

θijt
θij ). Thus,

Ns
it = Ns,1

it +
vi

1− vi
Ns,2
it

The real blue line represents the growth from the change in first component(indexed by the left y-

axis), η
1−η∆stN

s,1
t .The dash gray line represents the the second component (indexed by the right y-axis),

η
1−η∆stN

s,2
t .At year t, we construct the sparsity measure is the based on the input-output table at the

three-digit NAICS level at the end of calendar year t. We follow Herskovic [2018] to choose η = 0.35.
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Figure 12: Knowledge Diffusion across Firms

Note: This figure illustrates how a representative firm i learns from others in our empirical construction of

knowledge diffusion matrix and our model of micro foundation. Specifically, firm i (Walmart) put resources

to establish several research groups, each of them focusing on various technology fields. Consider the research

group in technology class 2 (scientific computation), they learn knowledge and insights not only from the

patents in technology class 2, but also from patents in other fields, say class 1 (Software). The knowledge

flow from class 1 to class 2 is captured by Ω21. On the other hands, there are many companies (like Microsoft,

IBM, and Uber etc) contributing to knowledge and insights in the class 1.The more the knowledge firm j

contributes to the technology class 1, the easier the researchers in scientific computation of firm i learn from

class 2, and the more resources firm i (Walmart) puts in class 2, then the more the knowledge and insights

firm i will obtain from j through this channel.

61



Figure 13: Patent Predictability Based on the Innovation Network

Note: This figure shows the predictability of patent issuance in the downstream sectors using the historical

patent issuance in the upstream sectors in the innovation network.
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Appendix

A Derivations of the Network Model

A.1 The Knowledge Diffusion Matrix

In this section, we provide a heuristic micro foundation to the innovation network that

extends the static version by Bloom et al. [2013] to the general dynamic settings.

A.1.1 Arrival of Innovations

Suppose there are [J ] = {1, 2, ..., J} sectors (i.e., representative firm), and [T ] = {1, 2, ..., T}

as the set of technology classes in technology space. Denote

A(t) = [A1(t), ..., Aj(t), ..., AJ(t)]′ (50)

as the joint technology stock at time t, with Aj(t) the technology stock of sector j ∈ [J ].

Within the time interval [t, t+ 1], denote Nj(t, t+ 1) as the new arrival of technology inven-

tions. The technology will be lifted up due to new innovation, we write as

log(
Aj(t+ 1)

Aj(t)
) =

∑
i≤Nj(t,t+1)

[zji(t+ 1) + zj(t+ 1) + z(t+ 1)] (51)

Here, we decompose the lift-up effect of each invention into three components - innovation

specific, firm specific and time specific, i.e., we allow for inner product of shocks between

sectors. Without loss of generality, we set Etzji(t + 1) = 0, gA,j = Etzj(t + 1) and gA =

Ejz(t + 1). If we assume zji(t + 1), zj(t + 1), and z(t + 1) are independent of Nj(t, t + 1),

then

Et log[
Aj(t+ 1)

Aj(t)
] = EtNj(t, t+ 1)Et[zji(t+ 1) + zj(t+ 1) + z(t+ 1)]

and

Et log[
Aj(t+ 1)

Aj(t)
] = µj(t)

with µj(t) is the arrival intensity of new technology between t and t+ 1.
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A.1.2 Endogenous Learning

In this subsection, we model the process of arrival intensity as a learning process in a dynamic

setting. In reality, one firm in a specific industry (e.g. Microsoft) may issued many patents,

spanning several technology classes in technology space [T ]. We denote Fq←j(t) as the

fraction of sector j’s technology in technology class q, denote

Fj(t) = (F1←j, ..., Fq←j, ..., FT←j)
′ (52)

as the technology distribution of sector j in technology space [T ]. Empirically, the distribu-

tion F j is very persistent over time if we interpret it as the patent distribution in technology

space [Acemoglu et al., 2016b]. Denote

TPq(t+ 1) =
∑
k∈[J ]

Fq←klog[
Ak(t+ 1)

Ak(t)
] (53)

the technology insights in field q contributed by all sectors between t and t+ 1, which is the

available technology can be learned by all sectors (companies).

Figure 12 shows how firms learn from each other. Firm j (Walmart) put efforts and re-

sources to establish research groups or laboratories in various technology fields - scientific

computation, software, and forecasting etc. Consider researchers in scientific computation,

they not only obtain insights from the technology progress in scientific computation, but also

from the technology progress in other fields like software contributed by other companies like

Microsoft, IBM, and Uber etc. Specifically, we denote the effort or resource vector as

ej(t) = (ej,1, ..., ej,τ , ..., ej,T )′(t)

with ejτ (t) the resources put by j in technology field τ at t. Given the efforts ej(t), we model

the arrival intensity at t+ 1 as

µj(t) = (1− θ0)µj(t− 1) + θ1
∑
τ∈[T ]

f(ejτ (t), ljτ
∑
q

Ωτ←qTPq(t)) + εujt (54)

64



We explain this setup one by one as follows

1. If there is no learning or R&D, the arrival process is mean-reverse (i.e., θ0 > 0)

µj(t) = (1− θ0)µj(t− 1) + εut

2. TPq(t) is the technology knowledge in field q that researchers can learn. Ωτ←q measures

the easiness of researchers with expertise in field τ learning from field q. We use Ωτ←q

to capture the technology closeness between fields τ and q and allow for heterogeneity

in the easiness. This is quite intuitive, it is easier for researchers in Algorithm to learn

from technology class Optimization than Hardware Designers. The higher Ωτ←q is, the

easier it is that knowledge flows from q to τ .Overall, we use

Ωτ←qTPq(t))

to capture the amount of knowledge in field q available to field τ adjusted by learning

easiness.

3. In real world, sometimes it is more difficult for some sectors (firms) than others to

obtain or apply the useful insights from a given technology field. To capture this

effect, we use lj,τ to measure learning ability of firm (industry) j from τ , thus, the term

measures

ljτ
∑
q

Ωτ←qTPq(t))

the easiness of researchers in technology field τ of firm (industry) j from others.

4. f(ejτ (t), ljτ
∑

q Ωτ←qTPq(t)) is the search-match function in technology field τ for firm

(industry) j.With more efforts put in searching for ideas, it is more likely to get new

ideas and promote the arrival rate of invention. For simplicity, we further assume the

search-match function take the form of

f(x1, x2) = α0x2 + xα1x
1−α
2
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α0x2 captures the externality due to technology diffusion, and α ∈ (0, 1) capture the

diminishing marginal effect in learning.

5. The promotion effect due to learning is additive across research groups

∑
τ∈[T ]

f(ejτ (t), liτ
∑
q

Ωτ←qTPq(t))

with TPq(t) the pool of knowledge in technology class q from which firms can learn

new insights.

A.1.3 Optimal Searching Efforts

Firms choose efforts ej(t) = (ej,1, ..., ej,τ , ..., ej,T )′(t) to improve the arrival rate µ(t) which

will in turn accelerate the arrive of the new invention in the future. At period t, given

Based on the search and match function in equations 54 and ??, the optimal level of resources

put in field τ is

Ṽj(t)αθ1[
1

Ṽj(t)
]α
[ ljτ ∑q Ωτ←qTPq(t)

ejτ (t)

]1−α
= 1 (55)

Thus, the optimal amount of resources put into searching for ideas or insights would be

e∗jτ (t) = Ṽj(t)(αθ1)
1

1−α liτ
∑
q

Ωτ←qTPq(t) = Ṽj(t)(αθ1)
1

1−α ljτ
∑
q,k

Ωτ←qFq←k∆ log(Ak(t))

(56)

The dynamics of arrival intensity follows

µj(t) = (1− θ0)µj(t− 1) + (α0 + θ̃1)
∑
τq,k

ljτΩτ←qFq←k∆ log(Ak(t)) (57)

with θ̃1 = θ1(αθ1)
1

1−α . Let us denote ρ = θ0, and

Wjk = (α0 + θ̃1)
∑
τ,q

ljτΩτ←qFq←k (58)

We have

µ(t) = (1− ρ)µ(t− 1) +W∆ log(A(t)) (59)
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in matrix form. Also note that it is very easy for us to incorporate shocks σuz
u(t) to the

arrival intensity in equation 54. Thus, the reduced diffusion process can be written as

µ(t) = (1− ρ)µ(t− 1) +W∆ log(A(t)) + σuz
u(t) (60)

A.2 General Cases

In this section, we address the general cases of the nested input-output networks. We start

with the basic equations to characterize the equilibrium.

A.2.1 The General Equilibrium

Note that, in equilibrium, all dividends from companies will be consumed

Ct =
∑
j

Djt = (1− η)
∑
j

PjtYjt = (1− η)Yt =⇒ ∆ct+1 = ∆yt+1 (61)

with ct = log(Ct), yt = log(Yt), ∆ct+1 = ct+1 − ct, and ∆yt+1 = yt+1 − yt.

Using the market clear condition for firm i, we have

cit +
∑
j∈[J ]

Xjit = Yit =⇒ Pitcit +
∑
j∈[J ]

PitXjit = PitYit

=⇒ αiCt +
∑
j

PitXjit

Ijtλjt

Ijtλjt
PjtYjt

PjtYjt = αiCt + η
∑
j

θ̃jitPjtYjt = PitYit

=⇒ αi(1− η)Yt +
∑
j

θ̃jitPjtYjt = PitYit

(62)

The above is just the accounting identity of input-output table. θ̃jit =
PitXjit
Ijtλjt

is the reliance of

sector or firm j on firm i - the share of expenditure of firm j on firm i. From the optimization

of intermediate firms, we have θ̃jit = θ
vj
jiP

1−vj
it λ

vj−1
jt . Using equation 5, we have

θ̃jit =
P

1−vj
it θ

vj
ji∑

k P
1−vj
kt θ

vj
jk

(63)
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θ̃jit is the price adjusted input dependence of sector j on i. The intuition for equation 62 is

that - the final product of sector i will be used either as consumption, αi(1 − η)Yt, or the

input to other sectors, θ̃jitPjtYjt. We also can write equation 62 using share of each sector

αi(1− η) + η
∑
j

θ̃jitsjt = sit =⇒ s = (1− η)[I − ηΘ̃′t]−1α (64)

with sjt = PjtYjt/Yt,∀j ∈ [J ], s = (s1t, ..., sJt)
′, α = (α1t, ..., αJt)

′ and Θ̃t = (θ̃ijt)|J |×|J |.

There are several things worth mentioning.

1. The reliance of sector j on sector i, θ̃jit, is endogeneous, depending on At and the

structure parameters in our model. For the Cobb-Douglas case, θ̃jit = θji is constant

over time.

2. The intuition of equation 64 is very clear - the products of firm or sector i will be

used either in consumption, i.e. αi(1 − η), or used as input for other sectors, i.e.,

η
∑

j θ̃jitsjt. The importance of firm or sector i,sit is defined recursively, depending on

the importance of its downstream firms and their reliance on i.

3. How technology shocks affect the reallocation of resources across sectors can be fully

captured by Θ̃t, which in turn is observable from the input-output table. Thus, Θ̃t is

the sufficient statistics capturing the reallocation effects.

4. When vj > 1, the substitute effect dominates the income effect. When the price Pit

increases, firm j can substitute away Xit, the effective reliance of firm j on the firm i,

θ̃jit, declines. In partial equilibrium, if there is bad shock to firm or sector i, leading to

an increase in price of firm i, we would expect firm or sector j replace away from the

product i. Conditional on sjt, j 6= i, we expect the share of firm i to decline as shown

in 64.

5. When v < 1, the substitute effects are dominated, the firm or sector j can not fully

substitute away from i to offset the price shock exposure to i. Under this case, the

effective reliance on i increases.
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From the first order condition of firm optimization, we have

[sitYt]
1−η = λ−ηit PitAitη

η, i ∈ [J ]

=⇒ (1− η)[log(sit) + log(Yt)] = −η log(λit) + log(Pit) + log(Ait) + η log(η)

=⇒ (1− η)[log(st) + 1 log(Yt)] = −η log(λt) + log(Pt) + log(At) + η log(η)1

(65)

where 1 = (1, 1, ..., 1). Besides, from θ̃jit = θ
vj
jiP

1−vj
it λ

vj−1
jt , we have

(1− vj) log(λjt) = (1− vj) log(Pit) + vj log(θji)− log(θ̃jit)

=⇒ (1− vj)θ̃jit log(λjt) = θ̃jit[(1− vj) log(Pit) + vj log(θji)− log(θ̃jit)]

=⇒ (1− vj) log(λjt) = (1− vj)
∑
i∈[J ]

θ̃jit log(Pit) + vj
∑
i∈[J ]

θ̃jit log(θji)−
∑
i∈[J ]

θ̃jit log(θ̃jit)

(66)

The last equation is obtained by summing across all i’s and use
∑

i θ̃jit = 1.

Definition A.1 We define

N θ
jt =

∑
i∈[J ]

θ̃jit log(θ̃jit) +
vj

1− vj

∑
i∈[J ]

θ̃jit log (
θ̃jit
θji

),∀vj 6= 1

with N θ
jt =

∑
i∈[J ] θji log(θji) ∀vj = 1.

where N θ
jt is the sparsity of input-output matrix for firm j similar to Herskovic [2018]. There

are two things worth mentioning. First, Herskovic [2018] obtains the measure of sparsity for

Cobb-Douglas case, which is
∑

i θ̃jit log(θ̃jit) and assume it is exogenous. Second, he takes

the log-linear approximation around Cobb-Douglas case to approximate for the general case,

we extend the sparsity definition to the general case accurately, but adjusted by an additional

term
vj

1−vj

∑
i∈[J ] θ̃jit log (

θ̃jit
θji

).
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From equation 66, we have log(λjt) =
∑

i∈J θ̃jit log(Pit)−N θ
it

20

log(λt) = Θt log(P t)−N θ
t (67)

Besides, we also have normalization condition,

∏
[
Pit
αi

]αi = 1 =⇒ α′ log(P t) = α′ log(α) (68)

A.2.2 Solution to the General Nested Networks

There are 3|J | + 1 unknown variables in equations 64, 65, 67, and 68 - Pt = (P1t, ..., PNt),

st = (s1t, ..., sNt),λt = (λ1t, ..., λNt) and the aggregate output Yt, and 3|J |+1 of independent

equations. In equilibrium, θ̃jit can be solved as a function of At. Most importantly, θ̃jit can

be recovered from the input-output table which enables us to obtain a closed-form solution

to the general cases as a function of At and the observable Θ̃t. Substitute equation 67 into

65, we obtain

(1− η)[log(st) + 1 log(Yt)] = ηN θ
t + [I − ηΘ̃t] log(Pt) + log(At) + η log(η)1

=⇒ (1− η)[s′t log(st) + log(Yt)] = ηs′tN
θ
t + (1− η)α′ log(α) + s′t log(At) + η log(η)

(69)

Here, we have used the equations 64, 68,and s′t1 = 1. Thus, the output would takes the

form of

log(Yt) = s′t

[
− log(st) +

η

1− η
Nθ
t +

1

1− η
log(At)

]
+

η

1− η
log(η) +α′α (70)

20In literature, researchers usually notice that

λ1−v
jt =

∑
k

θvjiP
1−v
it , v 6= 1, and λit =

∏
j

(
Pjt
θij

)θij if v = 1

For v = 1, we have
log(λt) = Θ log(P t)−Nθ, if v = 1

where Nθ = (
∑
j θ1j log(θ1j), ...,

∑
j θJj log(θJj))

′ is the sparsity of the input-output networks. When v 6= 1,
there is neither linear nor log-linear relationship between λt and P t based on the above equation, they con-
clude that there is no-closed form solution to the general case. However, if we note that θ̃jit = θ

vj
ji P

1−vj
it λ

vj−1
jt ,

we still have a log-linear relationship between λt and P t.
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Furthermore, the price in equilibrium can be determined as

log(P t) = (I− ηΘ̃′t)−1
[
(1− η) log(st) + (1− η)1 log(Yt)− ηN θ

t − log(At)− η log(η)1
]

(71)

In the general case, the system goes beyond the Hulten’s theorem [Hulten, 1978; Baqaee

and Farhi, 2019] by including additional terms s′t log(st), and −s′tNθ
t , both of which can be

estimated from the data.

B State Space Model Estimate

B.1 Estimation with TFP Data

So far we measure the innovation process ∆at with patent data. One caveat of doing so

is that patent issuance or filing can only measure R&D activities up to a time lag, as they

are the results of the R&D several months or even years ago. In this section, we measure

the innovation process with sector-level TFP data in the US, and investigate the technology

shock and innovation network.

B.1.1 Model Setup

Different from patent-based measure of innovation, TFP growth can be decomposed into

two parts: technological progress and improvement in management efficiency. As a result,

we modify our model and divide the log TFP process ãt into technology and efficiency

components as

ãt = at +mt (72)

Similar to the previous model, the technological growth is knowledge diffusion plus noise:

∆at = µt + εat with εat ∼ N (0, σ2
aI)

here the arrival intensity of innovation µt follows

µt+1 = (1−ρ)µt+W∆at+ε
u
t+1 = [(1−ρ)I+W ]µt+Wεat+ε

u
t+1, with εut ∼ N (0, σ2

uI) (73)
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where εut is the technology shock process, and

W = ΞW̃ ,Ξ = diag{ξ1, ..., ξJ}, W̃ is from the citation matrix data. (74)

The growth of management efficiency mt follows AR(1) process

∆mt+1 = ρm∆mt + εmt+1, with ρm constant, εmt ∼ N (0, σ2
mI) independent with εut (75)

The model can be written as a state space form with the measurement equation as:

∆ãt = µt + ∆mt + εat , with εat ∼ N (0, σ2
aI) (76)

The state equation is µt+1

∆mt+1

 =

(1− ρ)I + ΞW̃ 0

0 ρmI

 µt

∆mt

 +

ΞW̃ εat + εut+1

εmt+1

 (77)

In this problem, we hope to estimate ρ, ρm,Ξ, σ
2
u, σ

2
a, σ

2
m and look into the interaction of the

technology shock process εut and the knowledge diffusion matrices.

B.1.2 Data and Estimation Results

For estimation, we use the sector level TFP data from the BEA-BLS database21. We use the

the official multifactor productivity (MFP) estimates as the measure of ãt in Equation (72).

The data is available at the sector level annually from 1987 to 2018, and we further construct

3-digit NAICS level TFP each year to investigate its interaction with the knowledge diffusion

matrix we construct in Section ??.

Since the TFP data only cover a shorter time period than patent data, here we further as-

sume that Ξ = ξI. Thus we only need to estimate ρ, ρm, ξ, σ
2
u, σ

2
a, σ

2
m. Using the state space

estimation algorithm in Appendix D, the estimation results are in Table 5. Similar to the

estimation results with patent data, here 1− ρ+ ξ = 0.9763, which is very close to 1.

21Data and relevant documents are available at this BLS webpage.
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With the parameter estimates, we can recover the technology shock process εut , and inves-

tigate its interaction with the knowledge diffusion matrices over time. In Figure 9, we plot

the inner product of the technology shocks and the leading eigenvector of knowledge dif-

fusion matrices over time. The grey shadow area plots the NBER recessions. We can see

that during the Great Recession, the negative TFP shock get mostly amplified through the

knowledge diffusion network.

C Data Appedix

C.1 Patent Data and Construction of Diffusion Matrix

In this appendix, we describe more details on the construction the standardized innovation

diffusion matrix W̃ . We mainly use the patent datasets constructed by Zhu [2020] who

makes two significant improvements in patent citations and assignees, compared to the data

by Hall, Jaffe, and Trajtenberg [2001] and Kogan, Papanikolaou, Seru, and Stoffman [2017].

First, Zhu [2020] constructs a more complete patent citation datasets, which is roughly 170%

of that in Kogan, Papanikolaou, Seru, and Stoffman [2017]. Second, Zhu [2020] develop new

algorithm to match the patent assignees and companies in CRSP/CompuStat where 45% of

patents are matched to CRSP/CompuStat, much higher than that by Hall, Jaffe, and Tra-

jtenberg [2001] and Kogan, Papanikolaou, Seru, and Stoffman [2017]. These improvements

are important for us to construct a more complete innovation network.

Briefly speaking, the patent datasets include three sub-datasets - patent issuance, patent

assignee, and patent citation. The patent issuance and assignee datasets can be traced back

to 1920 and updated to 2014, while the patent citation dataset can only be traced back

to 1947. At each year t, we use the patent citation in the past five years to construct the

innovation diffusion matrix. Thus, our dynamic diffusion matrix W̃ is available between 1952

and 2015. For the sample before 1952 or after 2015, we implicitly assume the knowledge

diffusion matrices to be stable [Acemoglu, Akcigit, and Kerr, 2016a], and use the latest one
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to make approximation.

C.1.1 Static Diffusion Matrix

To illustrate the intuition of the construction on W̃ , we first consider the construction in a

static context. In the next subsection, we describe in more detail about the construction of

dynamic diffusion matrix.

Figure 12 shows how firms learn knowledge from others. Firm i (Walmart) put efforts and

resources to establish research groups or liboratories in various technology fields. For exam-

ple, the company could have several research groups - scientific computation, software, and

forecasting etc. Consider the researchers in the scientific computation (technology class τ),

they not only obtain insights from the new knowledge of the field scientific computation, but

also from the new knowledge of other technology fields (say, like software) created by other

companies like Microsoft, IBM, and Uber etc.. On the other hand, firm j (e.g. Microsoft)

may issued many patents, spanning several technology classes in technology space [T ].

Empirically, we interpret the technology fields as the classes based on patent classification

maintained by US Patent Office (USPTO). Based on the usage and property of the patent,

US Patent Office (USPTO) assign each patent into one or several technology classes and

subclasses called USPC. Specifically, the patent is first assigned into three-digit main class,

within the main class, the patent will be further assigned into more detailed 6-digit subclass.

In our paper, we focus on the three-digit main classes.

To measure the knowledge flow intensity from the representative firm in industry j to i,

we denote l = (li,1, ..., li,T ) as the patent or reference distribution of industry i over the

technology space, denote F q = (Fq,1, ..., Fq,J), q ∈ [T ] as the distribution of patents in

technology field q over industries, and Ωτ,q as the easiness of researchers with expertise in
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fields τ learning insights from q. We proxy W̃ for

W̃i,j =
∑
q,τ

liτΩτ,qFq,j (78)

The intuition here is straightforward. The knowledge that the representative firm in indus-

try i learns from j depends on the three parts - 1) the distribution of the resources of the

representative firm in industry i in various technology fields (τ), captured by liτ , τ ∈ [T ],

2) the easiness of researchers in technology class τ learning from q, captured by Ωτ,q, 3) the

amount of knowledge in technology field q that the representative firm in j contributes to,

captured by Fq,j.

To estimate the easiness of the knowledge flow from q to τ , we construct a technology class-

to-class citation matrix based on the patent-to-patent citations. Specifically, denote Citτ,q

as the total number of references made by patents in technology class τ to the patents in

technology class q 22. We proxy the easiness measure as

Ωτ,q =
Citτ,q∑′
q Citτ,q′

C.1.2 Construction of Dynamic W̃

In the previous subsection, we mainly talk about the construction of W̃ in a static and

abstract setting which provide useful insights to us. In this subsection, we describe how to

construct it from our real patent datasets. We use the patent datasets constructed by Zhu

[2020]. We construct the time-varying W̃ ij(t)
23 as

∑
τ,q∈[T ] li,τΩτ,qFq,j.

At year t, we estimate the li(t) = (li,1(t), ..., li,T (t)) based on five-year rolling window. Specif-

ically, at year t, we calculate li,τ (t) as the fraction of patents, granted to firms in industry i

in the past five years, that belong to technology class τ . If one patent is assigned to several

technology classes (say, k classes) by US Patent Office (USPTO), we split the patent into

22If the patent belongs to each technology class, we equally split the patents into these classes
23Here, we denote as W̃ (t) to indicate time-varying
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the k classes equally, and accrue 1/k patent to each class. Obvisouly,
∑

τ∈[T ] li,τ (t) = 1.

To estimate the time-varying Ωτ,q(t). At year, we first find all patents, issued between year t

and t− 5, that belong to the technology class τ . If the issued patent is in several technology

classes, we split it equally among these classes. For the patent in class τ issued in year t− s

with 0 ≤ s < 5, we count its references to patents in class q that issued between t − s and

t− s−10. Denote Citτ,q(t) as the total number of references by patents in class τ to patents

in class q, we estimate Ωτ,q(t) as Citτ,q(t)∑
q′ Citτ,q′

.

Figure ?? shows the sparsity of Ωτ,q(t), τ, q ∈ [T ] at year 2014. For class τ , we define its

in-degree as the number of three-digit classes to which patents in τ refer in the past ten

years, that is, #{q ∈ [T ],Ωτ,q(t) > 0}. Similarly, we define the out-degree as the number of

classes citing the class τ , #{q ∈ [T ],Ωq,τ (t) > 0}. We can see that the both in-degree and

out-degree distribution are highly left-skewed, most of the technology classes only cite or are

cited by few technology classes. However, there are non-negligible technology classes citing

or being cited by hundreds of other technology classes.

Finally, to estimate the F q(t) = (Fq,1(t), ..., Fq,J(t)), q ∈ [T ]. At year t, we first count the

number of patents issued between t and t − 5 in the technology class q, and then use the

fraction attributed to the firms in industry j to estimate Fq,j(t), j ∈ [J ].

C.2 Sector Output Data

In this section, we describe how to construct US sector gross output {sj} at three-digit

NAICS code level from 1947 to 2018. We use data from both the Bureau of Economic Anal-

ysis (BEA) and the Bureau of Labor Statistics (BLS). Though BEA is the most authorized

data provider of US industry output data, they did not provide gross output data for detailed

manufacturing industries from 1977 to 1997. Fortunately, BLS construct a detailed industry

output measure for 205 sectors each year from 1972 to 201824. For the year from 1947 to

24See “Data for Researchers” on this BLS webpage, last accessed on January 6, 2020. According to BLS
report which can also be downloaded from this webpage, they did a very careful job to construct the industry
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1972, we use the historical gross output by industry data from BEA25.

The 1972-2018 BLS industry output data are coded in the BLS 205 Order Industry Sector-

ing Plan, and BLS provide an official guidance to map their industry classification to the

NAICS 2017 classification. The 1947-1971 data are coded in the BEA IO code, which could

be mapped to the NAICS 2017 classification by hand26. After the mapping, we have industry

output data from 1947 to 2018 coded in NAICS 2017 classification.

Since the original industry division was not in three-digit NAICS level, each entry of the data

after the mapping may correspond to the total output of more than one three-digit NAICS

industry, or may correspond to the output of some 4-digit NAICS industries. To construct

{sj} for each single three-digit NAICS industry, we first follow Acemoglu, Akcigit, and Kerr

[2016a] to split the output equally to each industry if one data entry is the total output of

several industries. Then we merge the data to three-digit NAICS level and calculate the

sector output shares {sj} for each three-digit NAICS industry every year from 1947 to 2018.

C.3 Sector Input-Output Data

In this section, we describe how to construct US sector input-output {Θ̃t} at three-digit

NAICS code level for non-government sectors27 every year between 1947 and 2018. The data

source is the Bureau of Economic Analysis (BEA), including a 71-industry input-output

table for each year in 1997-2018, and a 65-industry table for each year in 1963-1996, and a

46-industry table for each year in 1947-196228. Since BEA release various versions of input-

output measures from 1972 to 2018. We also compare the BLS data with BEA data for 1997-2017 when
BEA also provide detailed industry output for all the industries, and find that they are highly consistent
with each other.

25The data can be found in the gross output link on this BEA webpage, last accessed on January 6, 2020.
26BEA only provides a verbal description for its historical industry classification, while we find the BEA

historical classification matches almost perfectly to 2-digit or three-digit level NAICS 2017 classification with
few exceptions.

27Though the BEA IO table covers all sectors including government sectors, the map between those
government sectors and NAICS sectors is missing. So we follow the literature like Bigio and La’o [2016]
to only focus the non-government sectors in this paper. We would also drop the government sectors when
calculating the sector gross output shares.

28The data for 1997-2018 can be found in the “Make-Use Tables” section, and data for 1947-1962 and
1963-1996 in the “Historical Make-Use Tables” section, both on this BEA webpage, last accessed on January
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output tables, we follow the literature like Bigio and La’o [2016] to use the “Use Table after

Redefinitions” for 1997-2018, and use the “Use Table before Redefinitions” for 1947-1996 as

the redefined data are not available then.

Similar to the sector output data, we need to map the original data in the BEA IO code to

NAICS code. The 1997-2018 input-output data are provided together with a concordance

between its industry classification and NAICS 2007, while the 1947-1996 data are provided

with a concordance with NAICS 2012 classification. So we first map the BEA IO code to

the NAICS 2007/2012, then map the NAICS 2007/2012 to NAICS 2017 to get consistent

industry classification29.

To construct {Θ̃t} between all the pairs of single three-digit NAICS industries, we need to

split data entries that correspond to multiple NAICS industries. Similar to the work on

sector output shares, we split the input-output value equally to each industry if one data

entry is the total input or output of multiple NAICS industries. Then we merge the data

to three-digit NAICS level to get the input-output table {Θ̃t} between all the three-digit

NAICS industry pairs every year from 1947 to 2018.

C.4 NAICS Classification for Firms since 1925

In this paper, we classify industries following the 2017 version of the North American Indus-

try Classification System (NAICS). However, NAICS code is generally not available in the

Compustat data until 1997, the year when NAICS was introduced30. Also, there have been

five versions of NAICS classification: 1997, 2002, 2007, 2012 and 2017, among which the

same industry code could means different industries. To make our analysis more consistent,

we map all public firms in the US since 1925 into the 2017 NAICS classification. As some

firms may operate in different industries over the year, the mapping is constructed for every

6, 2020. Note that the BEA used to only release the input-output tables for every five years before 1997,
while they recently released a new dataset including annual input-output table since 1947, which is used in
this paper.

29For example, there are sectors 513 and 514 in NAICS 2012, which are merged into 515 in NAICS 2017.
30NAICS is not available in the CRSP data provided by WRDS until 2004.
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pair of {firm, year}. With a CRSP dataset on the universe of US public firms since 1925 with

their (Standard Industrial Classification) SIC and NAICS code each year whenever possible,

the construction procedure proceed as follows:

1. Map all NAICS code to the 2017 NAICS version. For each {firm, year} pair with

NAICS information available, take that NAICS code as the most recent version of

NAICS in that year, and map that NAICS code into the 2017 version of NAICS

classification with the official concordances provided by the Census Bureau31.

Among all 115,154 data entries in CRSP with NAICS information available, 110,757

(96.2%) can be mapped to the 2017 NAICS in this way, with the remaining 4,397

entries’ NAICS cannot be found in the most updated version of NAICS then. There

are 297 unique 6-digit NAICS codes for those 4,397 data entries, and we search for

them in other versions of NAICS. 132 of them can be uniquely spotted in only one of

the historical NAICS version. The remaining 140 NAICS codes can be found in more

than one historical version of NAICS. For those, we take them as the latest version.

This is totally acceptable, as we manually check that most of those NAICS codes are

exactly concordance with each other in different versions of NAICS. There are also 25

NAICS code cannot be found in any historical versions of NAICS, so we would not

make use of those NAICS information, and would leave those firms to further steps.

2. Fill in NAICS code with SIC code. After the first step, we could get roughly 26.4%

of the CRSP data mapped to the 2017 NAICS, and we need to map the remaining

data using their SIC information. We take all SIC codes in CRSP as the most recent

1987 version, and map them to the 2017 NAICS codes using the official concordances

provided by the Census Bureau. Similar to the last step, we also search in historical

SIC classifications for those SIC codes that cannot be found in the 1987 SIC, and map

them into the 1987 SIC thus 2017 NAICS.

31The official concordances can be found on this webpage, last accessed on March 30, 2020. In practice,
we merge the concordances between 1987 SIC and 2002 NAICS, 1997 NAICS and 2002 NAICS, 2002 NAICS
and 2007 NAICS, 2007 NAICS and 2012 NAICS, 2012 NAICS and 2017 NAICS, so that we can get the
concordances between all historical NAICS and the 2017 NAICS, and also between 1987 SIC and 2017
NAICS.
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After the procedures detailed as above, we could find the 2017 NAICS industry classifications

for all the US public firms since 1925. To note, one firm could belong to one or more 6-digit

NAICS industries in a given year, and we would split firm’s variable value into each NAICS

industry when we calculate measures in the industry level. How we do the split would not

matter much since most of our analysis would be done in the three-digit NAICS level (so

called “subsector”).

C.5 Compustat Data and Industry R&D Expenditure

The second proxy for the innovation shocks δµt = (δµ1t, ..., δµJt) is the realized drop in

R&D expenditure at industry level. We use the Compustat North America data to calculate

YoY change of quarterly32 R&D expenditure at the three-digit NAICS level. The quarterly

data on R&D expenditure begins in 1988Q3, so our measures for YoY expenditure change

begins in 1989Q3 and ends in 2018Q4. For each firm, we drop their missing values of R&D

expenditure before their first positive report, and set missing values after their first report

as 0. We also exclude all the negative report values of R&D expenditure.

To calculate YoY change of quarterly R&D expenditure at the three-digit NAICS level from

1988Q3 to 2018Q4, we proceed as below. First, using the NAICS classification for firms con-

structed in Section C.4, for those firms that belong to multiple three-digit NAICS industry

in a given year, we equally split their R&D expenditure value to each of the NAICS industry.

Second, for each three-digit NAICS industry in each quarter, we first select all the firms that

report R&D expenditures both in the current quarter and in the quarter one year ago, and

then we calculate the industry value of R&D expenditure in the current quarter and in the

quarter one year ago as the sum of the R&D expenditure of those firms (or subfirms) in

that quarters. Finally, we drop industries with 0 total R&D expenditure one year ago, and

calculate the YoY expenditure change for remaining industries.

32To note, the calendar quarters in the Compustat data are different from the calendar quarters we used
to understand with one month difference. For example, 2007Q1 in Compustat means Feb 2007 to Apr 2007,
while 2007Q4 means Oct 2007 to Jan 2008. We will take this difference into account for later calculation.
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Finally, we also winsorize change values outside the 95% percentile and 5% percentile of the

YoY expenditure change.

C.6 TFP Data at the Industry Level

To model the innovation process, we also use the sector level TFP data from the BEA-BLS

database33. We use the the official multifactor productivity (MFP) estimates. The data is

available at the sector level annually from 1987 to 2018, and we follow similar procedures as

above to construct 3-digit NAICS level TFP each year to investigate its interaction with the

knowledge diffusion matrix we construct in Section ??.

D State Space Estimation of Innovation Network Dy-

namics

D.1 Derivation of Maximum Likelihood Estimators

The likelihood function

p(∆a0:T ,µ0:T |Θ) = p(∆a0,µ0)
T−1∏
t=0

p(∆at+1,µt+1|∆a0:t,∆µ0:t) (79)

Note that p(∆at+1,µt+1|∆a0:t,∆µ0:t) = p(∆at+1|µt+1)p(µt+1|µt,∆at) from our model. Thus,

L(Θ|∆a0:T ,µ0:T ) = log[p(∆a0,µ0)] +
T−1∑
t=0

[log(p(∆at+1|µt+1)) + log(p(µt+1|µt,∆at))] (80)

Note that

log(p(∆at+1|µt+1)) = −0.5 log(2π)+0.5 log(|Σ−1A |)−
1

2
Tr(Σ−1A (∆at+1−µt+1)(∆at+1−µt+1)

′)

33Data and relevant documents are available at this BLS webpage.
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and

log(p(µt+1|µt,∆at)) =− 0.5 log(2π) + 0.5 log(|Σ−1u |)−
1

2
Tr(Σ−1u ((µt+1 −W∆at −Aµt))(µt+1 −W∆at −Aµt)′)

(81)

Thus, we have

L(Θ|∆a0:T ,µ0:T ) =

T + 1

2
log(|Σ−1A |)−

1

2
Tr(Σ−1A

T∑
t=0

(∆at∆a
′
t −∆atµ

′
t − µt∆a′t + µtµ

′
t))

+
T

2
log(|Σ−1u |)−

1

2
Tr(

T−1∑
t=0

Σ−1u ((µt+1 −W∆at)(µt+1 −W∆at)
′ − (µt+1 −W∆at)µ

′
tA
′

−Aµt(µt+1 −W∆at)
′ +Aµtµ

′
tA
′) + constant

(82)

We take expectation of the log of likelihood conditional on the observable variables, and

replace

1. E[µt|∆a0:T ] = µt|T

2. E[µtµ
′
t|∆a0:T ] = µt|Tµ

′
t|T + P t|T

3. E[µtµ
′
t+1|∆a0:T ] = µt|Tµ

′
t+1|T +Lt[P t+1|T + (µt+1|T − µt+1|t)µ

′
t+1|T ]

In our simplified case, we have restriction that ΣA = σ2
AI,Σu = σ2

uI,W = ΛW̃ ,A =

(1− ρ)I. We have

∂L

∂σ−2A
= 0⇒ σ2

A =
1

J(T + 1)
Tr(E(

T∑
t=0

(∆at∆a
′
t −∆atµ

′
t − µt∆a′t + µtµ

′
t))|∆a0:T ) (83)

∂L

∂σ−2u
= 0⇒ σ2

u =
1

JT

T−1∑
t=0

Tr(E((µt+1 −W∆at)(µt+1 −W∆at)
′ − (µt+1 −W∆at)µ

′
tA
′

−Aµt(µt+1 −W∆at)
′ +Aµtµ

′
tA
′|∆a0:T ))

(84)
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∂L

∂(1− ρ)
= 0⇒ 2(1− ρ) =

Tr(
∑T−1

t=0 E[(µt+1 −W∆at)µ
′
t + µt(µt+1 −W∆at)

′|∆a0:T ]∑T−1
t=0 Tr(E[µtµ

′
t|∆a0:T ])

)

(85)

∂L

∂(λi)
= 0⇒ λi =

∑T−1
t=0 E[(W̃∆at)i(µt+1 −Aµt)i|∆a0:T ]∑T−1

t=0 E[((W̃∆at)(W̃∆at)′)ii|∆a0:T ]
(86)

D.2 Estimation with Gradient methods

Since Equations 84, 85, 86 are nonlinear functions of parameters of interest, we follow Canova

[2011] (Section 6.3) to use gradient methods for estimation.

Denote ϕa = σ−2A , ϕu = σ−2u , ϕρ = 1− ρ, the first and second order derivatives are

dL

dϕa
=
J(T + 1)

2ϕa
− 1

2
ETTr(

T∑
t=0

(∆at∆a
′
t −∆atµ

′
t − µt∆a′t + µtµ

′
t)) (87)

dL

dϕu
=
JT

2ϕu
− 1

2
ETTr(

T−1∑
t=0

(µt+1 − ΛW̃∆at − (1− ρ)µt)(µt+1 − ΛW̃∆at − (1− ρ)µt) (88)

d2L

dϕ2
u

= −J(T )

2ϕ2
u

(89)

dL

dϕρ
= −ϕuETTr(

T−1∑
t=0

(1− ρ)µtµ
′
t − (µt+1 − ΛW̃∆at)µt) (90)

d2L

dϕ2
ρ

= −ϕuETTr(
T−1∑
t=0

µtµ
′
t) (91)

dL

dλi
= ϕuET

T−1∑
t=0

[(µt+1 − (1− ρ)µt)i(W̃at)i − λi(W̃at)i(W̃at)i] (92)

d2L

dλi
2 = −ϕuET

T−1∑
t=0

[(W̃at)i(W̃at)i] (93)
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We use the second order method - Newton Raposon Method as in Canova [2011] to find the

optimum,the step size can be obtain by −f ′′/f ′, we have:

The step size of update for ϕa

∆ϕa = ϕa −
ϕ2
a

J(T + 1)
ETTr(

T∑
t=0

(∆at∆a
′
t −∆atµ

′
t − µt∆a′t + µtµ

′
t)) (94)

The step size of update for ϕu

∆ϕu = ϕu−
ϕ2
u

J(T )
ETTr(

T−1∑
t=0

[(µt+1−ΛW̃∆at−(1−ρ)µt)(µt+1−ΛW̃∆at−(1−ρ)µt)
′]) (95)

The step size of update for ϕρ

∆ϕρ =
ETTr(

∑T−1
t=0 (µt+1 − ΛW̃∆at)µt)

ETTr(
∑T−1

t=0 µtµ
′
t)

− ϕρ (96)

The step size of update for λi

∆λi =
ET

∑T−1
t=0 [(µt+1 − (1− ρ)µt)i(W̃at)i − λi(W̃at)i(W̃at)i]

ET
∑T−1

t=0 [(W̃at)i(W̃at)i]
(97)

D.3 Proof of Convergence of the EM Algorithm

Proof. a. µt+1|t = E[µt+1|∆a0:t] = Aµt|t +W∆at since E[εut |∆a0:t] = 0.

b. Note that P t+1|t = V(µt+1|∆a0:t) = V(Aµt + εut |∆a0:t). Thus, we have

P t+1|t = AP t|tA
′ + Σu

c. ∆at+1|t = E[∆at+1|∆a0:t] = E(µt+1|∆a0:t) = µt+1|t since E[εAt+1|∆a0:t] = 0.

d. F t+1|t = V(∆at+1|∆a0:t) = V(∆ut+1|∆a0:t) + ΣA = P t+1|t + ΣA

e. P t+1|t+1 = V(µt+1|∆a0:t+1) = V(µt+1|∆a0:t,vt+1), with vt+1 = ∆at+1−∆at+1|t, using
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the property of joint normal of µt+1 and vt+1, we have

V(µt+1|∆a0:t,vt+1) = V(µt+1|∆a0:t)−Cov(µt+1,vt+1|∆a0:t)F
−1
t+1|tCov(µt+1,vt+1|∆a0:t)

′

Note that

Cov(µt+1,vt+1|∆a0:t) = Cov(µt+1,∆at+1|∆a0:t) = P t+1|t

Thus, we have P t+1|t+1 = P t+1|t − P t+1|tF
−1
t+1|tP

′
t+1|t

f. µt+1|t+1 = E[µt+1|∆a0:t+1] = E[µt+1|∆a0:t,vt+1] = µt+1|t+Cov(µt+1,vt+1|∆a0:t)F
−1
t+1|tvt+1,

therefore,

µt+1|t+1 = µt+1|t + P t+1|tF
−1
t+1|tvt+1

g. µt|T = E[µt|∆a0:T ] = E[µt|∆a0:t,vt+1:T ] since vt+1:T are independent of each and inde-

pendent of ∆a0:t, therefore, we have

µt|T = µt|t−1 +
∑
j≥t

Cov(µt,vj|∆a0:t−1)V(vj|∆a0:t−1)
−1vj

We further analyze the results for Cov(εut ,vj|∆a0:t−1). We first write the one-step

forecast error

vt+1 = ∆at+1 −∆at+1|t = µt+1 − µt+1|t + εAt+1 (98)

and

µt+1 − µt+1|t = A(µt − µt|t) + εut

= A(µt − µt|t−1)−AKtvt + εut

= Lt(µt − µt|t−1)−AKtε
A
t + εut

(99)

with Lt = A−AKt. Now we derive a formula for

Cov(µt,vj|∆a0:t−1) = E[µt(µj − µj|j−1 + εAj )′|∆a0:t−1]

= E[µt(µj − µj|j−1)′|∆a0:t−1]
(100)
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Moreover,

Cov(µt,vt|∆a0:t−1) = P t|t−1

Cov(µt,vj|∆a0:t−1) = P t|t−1Lt...Lj−1,∀j > t
(101)

Thus, we have

µt|T = µt|t−1 +
∑
j≥t

P t|t−1Lt...Lj−1F
−1
j vj (102)

From this, we can easily get a recursive formula

µt|T − µt|t = P t|tA
′P−1t+1|t(µt+1|T − µt+1|t) (103)

These results are the same as the standard state-space model with small modification

[Anderson and Moore, 2012]. Also, note that Lt = A −AKt = A −APt|t−1F
−1
t =

P t|tA
′P−1t+1|t
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